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Abstract 

The field-particle duality originates the modern physics with the Schrödinger equation since the end of the first quarter of the 

twentieth century; it yet poses understanding problems to specialists and it seems necessary to revisit the Quantum 

Mechanics origin. To show this necessity, we considered

equation. We postulated a de Broglie equation. The former defines a scalar field and the latter a vector field.

them as describing the interaction particle

defined by a gauge coupling explaining the part

couple are unified, fundamental bosons behave like phonons in a crystal with celerities lower than that of the light c; two o

the fields become local. The phonon concept led us to propose a vacuum elastic structure. We found that this is composed of 

bosons and antibosons we assumed belonging to the unified field. We showed that the vacuum could become

particles or objects interactions we explain

fermions owing to the boson-fermion symmetry.
 

Keywords: Boson, Fermion, Field unification, Fundamental field,
structure. 
 

Introduction 

The unification of fields is the greatest enigma in physics even 
with only ordinary fields. Its resolution relies on the field
particle duality, which is the foundation of modern 
the quantum theory. If still now this unification is not complete, 
one can ask if the duality is well complete; otherwise, the 
interpretation problem would not be so discussed
some physicists ask questions on the Quantum Mechanics
interpretation or formulation3,4. The source of the problem 
comes from the states meaning describing a system. They are 
rather abstract and seem not to have any relation with the classic 
physics nearer to our understanding, more familiar from the 
Maxwell electromagnetic theory. The lack of such relationships 
originated the quantum mystery. Succeeding to find out these 
for all fields seems a necessity to break the unification enigma, 
as we propose in this work. Hence, we could interpret the 
quantum states meaning in term of field and the probabilities in 
terms of field intensity consequently. 
 

The Maxwell theory constitutes besides the Standard Model 
principles background in particles physics. This Standard Model 
unifies three fundamental fields but without 
Specialists recognize its incompleteness despite of its success. 
To our knowledge, the asset of its completeness would come 
from a reinterpretation of Quantum Mechanics foundations in 
the vacuum, before matter considerations. The Super
theory goes beyond that model7,8 for its improvement but faces 
mathematical problems, e.g. with the vacuum structure.

Engineering Sciences ___________________________________________ 

(2017)  

Association   

A Maxwell like theory unifying ordinary fields
Louis-Marie Moukala1 and Timothée Nsongo2* 

École Normale Supérieure, Université Marien NGOUABI, Brazzaville, Congo
Groupe de Recherche sur les propriétés physico-chimiques et minéralogiques des matériaux, Faculté des Sciences et Techniques, Université 

Marien NGOUABI, Brazzaville, Congo 
nsongo@yahoo.com 

Available online at: www.isca.in, www.isca.me 
December 2016, revised 28th January 2017, accepted 14th February 201

particle duality originates the modern physics with the Schrödinger equation since the end of the first quarter of the 

yet poses understanding problems to specialists and it seems necessary to revisit the Quantum 

To show this necessity, we considered the simpler case of a moving particle in the vacuum with the Dirac 

quation. The former defines a scalar field and the latter a vector field.

them as describing the interaction particle-vacuum, we found four possible wave fields associated to any particle;

defined by a gauge coupling explaining the particles wave nature with any fundamental field. 

couple are unified, fundamental bosons behave like phonons in a crystal with celerities lower than that of the light c; two o

The phonon concept led us to propose a vacuum elastic structure. We found that this is composed of 

bosons and antibosons we assumed belonging to the unified field. We showed that the vacuum could become

explain from General Relativity. We predicted at last the existence of some fundamental 

fermion symmetry. 

Field unification, Fundamental field, Gauge coupling, Phonon, Quantum mechanics,

The unification of fields is the greatest enigma in physics even 
with only ordinary fields. Its resolution relies on the field-
particle duality, which is the foundation of modern physics via 
the quantum theory. If still now this unification is not complete, 
one can ask if the duality is well complete; otherwise, the 
interpretation problem would not be so discussed1,2. Nowadays, 
some physicists ask questions on the Quantum Mechanics 

. The source of the problem 
comes from the states meaning describing a system. They are 
rather abstract and seem not to have any relation with the classic 
physics nearer to our understanding, more familiar from the 

electromagnetic theory. The lack of such relationships 
originated the quantum mystery. Succeeding to find out these 
for all fields seems a necessity to break the unification enigma, 
as we propose in this work. Hence, we could interpret the 

eaning in term of field and the probabilities in 

The Maxwell theory constitutes besides the Standard Model 
principles background in particles physics. This Standard Model 
unifies three fundamental fields but without gravitation5,6. 
Specialists recognize its incompleteness despite of its success. 
To our knowledge, the asset of its completeness would come 
from a reinterpretation of Quantum Mechanics foundations in 
the vacuum, before matter considerations. The Super symmetry 

for its improvement but faces 
with the vacuum structure. 

Here, we are going to establish a new theory unifying ordinary 
fields, which reveals Maxwell theory like characteristics from 
gauges construction procedure; this will lead to microscopic and 
macroscopic aspects showing the unity between Quantum 
Mechanics and General Relativity in the same theory.
will discuss about the vacuum enigma and the symmetry 
between fermions and bosons. 
 

Fields unification theory 

One knows that the wave-particle duality comes from de 
Broglie hypothesis associating a wave bundle to any stable 
particle with a defined celerity in the vacuum. On the other 
hand, we have the Dirac equation of a free particle, 
allowed predicting the antiparticles existence. In this section, we 
show that the combination of both concepts leads defining a 
new duality. This allows understanding rapidly the field 
unification in the vacuum from gauge couplings.
the vacuum structure, the quantum solutions for a particle of 
mass m and charge q as well as the interaction interpretation 
from General Relativity. 
 
Completing the duality formulation: 

moving at the velocity �� in the vacuum where
of the light or that of any vacuum fundamental particle.
Interpreting the Dirac quantum state: If the four
describes the particle state of Hamiltonian
operators, the Dirac equation writes under the form������ �	��
��|��〉. We can rewrite this as
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particle duality originates the modern physics with the Schrödinger equation since the end of the first quarter of the 

yet poses understanding problems to specialists and it seems necessary to revisit the Quantum 

the simpler case of a moving particle in the vacuum with the Dirac 

quation. The former defines a scalar field and the latter a vector field. Considering 

vacuum, we found four possible wave fields associated to any particle; each is 

 When both gauges of the 

couple are unified, fundamental bosons behave like phonons in a crystal with celerities lower than that of the light c; two of 

The phonon concept led us to propose a vacuum elastic structure. We found that this is composed of 

bosons and antibosons we assumed belonging to the unified field. We showed that the vacuum could become instable during 

from General Relativity. We predicted at last the existence of some fundamental 

Gauge coupling, Phonon, Quantum mechanics, Vacuum 

Here, we are going to establish a new theory unifying ordinary 
fields, which reveals Maxwell theory like characteristics from 

construction procedure; this will lead to microscopic and 
macroscopic aspects showing the unity between Quantum 
Mechanics and General Relativity in the same theory. Then we 
will discuss about the vacuum enigma and the symmetry 

particle duality comes from de 
Broglie hypothesis associating a wave bundle to any stable 
particle with a defined celerity in the vacuum. On the other 
hand, we have the Dirac equation of a free particle, which 
allowed predicting the antiparticles existence. In this section, we 
show that the combination of both concepts leads defining a 
new duality. This allows understanding rapidly the field 
unification in the vacuum from gauge couplings. Then, we show 

vacuum structure, the quantum solutions for a particle of 
as well as the interaction interpretation 

Completing the duality formulation: We consider a particle 
in the vacuum where c is the velocity 

of the light or that of any vacuum fundamental particle. 
Interpreting the Dirac quantum state: If the four-vector � |��〉 
describes the particle state of Hamiltonian �� and impulse �� 
operators, the Dirac equation writes under the form ��� �|��〉 �

. We can rewrite this as 
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���� − �
�������|��〉 � −	��� �|��〉               (1) 

 
By substituting both operators by their classical definitions 
multiplied by a unit operator, this describes a fundamental field 
having the celerity c. This field defines the particle behavior in 
the medium, i.e. the result of the interaction particle-vacuum. 
We can understand a quantum state in this way since any wave 
equation represents this phenomenon.  
 
For instance, resolving the Schrödinger equation for a Hydrogen 
atom comes to find the electron behavior in the proton field, i.e. 
the result of the interaction electron-proton; taking for granted 
that the electron is the host particle and the proton is the 
medium master. In addition, if the hyper-fine structure of this 
atom reveals the proton properties, the vacuum would have to 
reveal its properties too. It is then an ideal medium having all 
wave fields. These manifest themselves in respect to any 
particle. 
 
Defining the de Broglie quantum state: According to the de 
Broglie hypothesis, a wave bundle associated to a particle has 
the celerity �� � �²/�. In propagation term, we can therefore 
formulate the corresponding wave equation in respect to a 
physical quantity; this can be a scalar, a vector or a tensor 
describing a field. Let us consider a four-vector as before, the 
case suitable for a stable particle. If �|���〉 is the corresponding 
De Broglie four-vector, we can then write 
 

�∆ − �
���

 �
 !²" 1. �|���〉 � �|%&'(�)�〉              (2) 

 
In Dirac formalism, �|���〉 is another state representing the 
particle in the vacuum. We can translate this, as another result 
of the interaction particle-vacuum. This field is also 
fundamental of celerity � if we rewrite this equation by 
substituting ��  so that  
 

*��²
∆ − �

+²

 �
 �+!��, 1�|���〉 � �

�²
�|%&'(�)�〉  ∀ � ≠ 0            (3) 

 
This is indeed a vacuum fundamental equation with the 
variables (�(�, 1�²2) if ((�, 1�2) is the space-time position. These 
are homogeneous to areolar velocities meaning that something 
rotates in the vacuum. It is the vector bosons describing surfaces 
along the motion in respect to its velocity. The De Broglie State 
reveals the vacuum behavior implying directly the boson spin 
concept. 
 
Field equations generalization: We have therefore two 
different states describing the interaction particle-vacuum. We 
deduct that a complete field-particle duality have to take into 
account both interaction kinds. In addition, if a given particle is 
no longer free, both field sources change. Using the initial 
definition of the de Broglie celerity for a particle having the 
impulse p and energy E, (3) writes under the general form, valid 
in General Relativity: 

* �3²
∆ − �

4²

 �
 �+!��, 1�|���〉 � �

3²
�|%&'(�)�〉  ∀ 5 ≠ 0             (4) 

 
This shows that the vector field also describes with the variables 
(5(�, 162); these are kinetic momentum projections on 
perpendicular axes to each axis respectively. 
 
Thus, we can represent each interacting field by a four-potential 
suitable to field description. Let then 78�9: 〉� ;  < �∥, ⊥? defines 
the four-potentials of the longitudinal and transverse states or 
equivalently of the scalar and vector states. If 8�%: 〉� defines each 
source, the corresponding equations write 
 
�:18�9: 〉� � 8�%: 〉�                (5) 

Where:  �∥ � ∆ − ∂A � ;  ∂! �  
+ ! ; �B � �

�� ∆ − �
�� ∂A �  

 
Gauges and fields expressions: Expressing explicitly each 
four-vector α under the explicit form 
8�9: 〉� � C9�: , 1V:/cF ; 8�%: 〉� � C%�: , 1S:
/cF, we have 
 

H�:9�: � %�:
�:I: � %:


�               (6) 

 
To find each mode gauges, we carry out by transforming each 
equation to another; this consists on applying the appropriated 
nabla operator to an equation both members, then integrating in 
respect to the time-coordinate. With the definitions 
 

∇KK�B� �
� ∇KK�;  ∂!B � �

� ∂!                (7) 
 

From the scalar potential equation, one gets two gauges for the 
scalar fields: 

�L∇KK�V∥�M2 � L∇KK�%∥
�M2 ⇒ �AKK�∥ � SK�∥ 
1P �AKK�∥ � ±R∇KK�V∥�M2 ; cSK�∥ � ±R∇KK�%
 �M2              (8) 
 
From the vector potential equation, one gets two gauges for the 
vector fields: 

�BL∇KK�BAKK�B�²M2 � L∇KK�BSK�B�²M2 ⇒ �BVB � S
  

1P VB � ±� R∇KK�BAKK�B�²M2 ; S
 � ±� R∇KK�BSK�B�²M2             (9) 
 
We summarize the result in Table-1 after derivation of 
conditional expressions. 
 

Each field definition is such as its combination with the gauge 
relation leads to a wave equation. One can note that the ordinary 
vector fields gets by multiplying each relation by �. There are 
four gauge couples for each mode. Each represents a 
fundamental field. One can expect them to be gravitational, 
electromagnetic, weak or strong. Usually, one recognizes the 
two last as fields of short range in matter. By using both 
adjectives here, we assume their existence in the vacuum as 
wave fields. 
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Gauge couplings identification and bosons nature: To 
identify the four gauge couplings, we can consider the case of 
fundamental particles, in which both kinds of field are unified; 
each four-potential |�A〉� satisfies both gauge relations of the 
couple. These combination lead to motion equations 
summarized in Table-2. The operator �∓ � �∆ ∓ βTA�� with U � �/� indicates a local equation decreasing in either space 
(for the strong field) or time (for the weak field), by definition.  
There is no field source in each case, expressing bosons 
spontaneous appearance as soon as the particle velocity is non-
zero. 
 

We identify the fields as follow: The electromagnetic field 
recognizes by the Lorentz gauge, which must be that of the 
weak field in order to justify the electro-weak vector field. 
Thence, the gravitational and strong vector fields are unified 
into gravi-strong field; the electromagnetic and strong fields are 
unified through scalar gauge; the weak and gravitational fields 
as well. Although these equations allow identifying gauge 

couplings, the waves velocity (�/VU) reminds that of de 
Broglie. Proceeding as before, we can define two possibilities 

for propagating waves at the celerity c: a space-time of 

coordinates ((�, 1�2/VU) or a space-time of coordinates 

(VU(�, 1�2). In both cases corresponds the velocity �� ′ � VU��. 
This leads to the relation �� ′�. ��/� � ��², which shows that to the 
de Broglie waves is associated a fundamental boson moving at 
the energy velocity �� ′�/� � �W/�² from the moving particle. 
This completes the relation ��� = �², which shows that to the 
de Broglie waves is associated a particle of velocity � from the 
vacuum. That fact expresses the interaction particle-medium so 
as we have to associate a structure to the vacuum too. 
Fundamental bosons are then similar to phonons in a crystal. 
We deduce that the vacuum has a crystal structure. The result 
with non-wave equations is the same. We dedicate the next 
section to this topic. 
 
We can now generalize the identification of couplings. Knowing 
that the local gauges must remain linked to the vector fields for 
non-fundamental bosons too, we deduct the Table-3 results for 
any boson kind. 

 

Table-1: Gauges and fields definitions for any particle. 
Gauge relation Field definitions Field equations 

c ∂AAKK�∥ − ∇KK�V∥ = 0K� ΓX= −∇KK�AKK�∥ + ∂AV∥/c 
�9�∥ = −∇KK�ΓX 

�V∥ = −c ∂AΓX; 

c ∂AAKK�∥ + ∇KK�V∥ = 0K� ΓY = ∇KK�AKK�∥ + ∂AV∥/c 
�9�∥ = ∇KK�ΓY ; 

�V∥ = −c ∂AΓY 

∇KK�BAKK�B + ∂ABVBc = 0 
EKK�Y = −∇KK�BVB − � ∂ABAKK�B DKK�Y = ∇KK�B ⋏ AKK�B 

�B9�B = ∇KK�B ∧ DKK�� + ∂ABEKK�Y/c 

�BVB = −∇KK�BEKK�Y 

∇KK�BAKK�B − ∂ABVBc = 0 
EKK�X = −∇KK�BVB + � ∂ABAKK�B DKK�X = ∇KK�B ⋏ AKK�B 

�B9�B = ∇KK�B ∧ DKK�X − ∂ABEKK�X/c 

�BVB = −∇KK�BEKK�X 
 

Table-2: Field identification with fundamental bosons. 

Non-local gauge Local gauge Equation Vector field 

∇KK�BAKK� + ∂ABVc = 0 
c ∂AAKK� + ∇KK�V = 0K� �X|�A〉� = 0 Electromagnetic 

c ∂AAKK� − ∇KK�V = 0K� �Y|�A〉� = 0 Weak 

∇KK�BAKK� − ∂ABVc = 0 
c ∂AAKK� − ∇KK�V = 0K� �X|�A〉� = 0 Gravitational 

c ∂AAKK� + ∇KK�V = 0K� �Y|�A〉� = 0 Strong 
 

Table-3: Gauge couplings identification for any boson. 

Vector gauge Scalar gauge Vector field 

∇KK�BAKK�B + ∂ABVBc = 0 
c ∂AAKK�∥ + ∇KK�V∥ = 0K� Electromagnetic 

c ∂AAKK�∥ − ∇KK�V∥ = 0K� Weak 

∇KK�BAKK�B − ∂ABVBc = 0 
c ∂AAKK�∥ − ∇KK�V∥ = 0K� Gravitational 

c ∂AAKK�∥ + ∇KK�V∥ = 0K� Strong 
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The vacuum elastic structure: To understand the vacuum 
structure, it is necessary to know its particle composition. As in 
any material, we can elastically explain the propagating waves 
as describing successive elastic shocks between a moving 
particle and an equivalent vacuum volume. Consider 
then _̂`and _̂ a as four-impulsesre presenting the particle and its 
equivalent before the shock and _̂, the resulting four-impulse 
after the shock. The conservation laws of energy and impulse of 
the system implies that 
 5̂� 5̂� = �� �5̂² − 5̂�5̂� − 5̂�5̂��             (10) 

 
Multiplying both member by �|9�:〉 and comparing with the 
previous equation, we find 5̂�5̂� = de2. 1�. The determination 
of both operators is impossible, otherwise, to near two 
constants. Then, due to the d’Alembertian definition, we can 
choose these following generalized solutions for a state α:  

H5̂�α = −1�fg�:�∇KK�: ∓ 1T�A:�5̂�α = −1�fg�:C∇KK�: ∓ 1T�A:F� fg�: . fg�: = −1           (11) 

 

In these, we defined the time arrow by the anti-unitary vector 1h� 
(h�² = −1) so that T�A: = h�TA:. This definition calls attention on 
the space and time equivalency. Then, it is opportune to express 
our operators in the base i(�/(, 1h�j so as 
 fg�: . fg�: = − k1 00 1l              (12) 

 
Remembering that only two parameters are necessary, both 
operators must be proportional to the same matrix (mg) such as 
 

nfg�: = σgf�: ;  fg�: = σgf�:
σg² = 1; f�: . f�: = −1    �                          (13) 

 
From a hermitic matrix 2x2, one shows that (mg) is a linear 
combination of the three Pauli matrixes, i.e. both components 
are fermions having the spins 1/2 and -1/2; this result is 
comparable to that of Dirac. One gets to mg: = V1 − �:�o�&e�p� mq + e1r�p�mst + �:mu           (14) 

With mq = k0   11   0l , ms = k  0    1−1   0l , mu = k1     0 0 − 1l 
 
Where: θ is an arbitrary angle and �: ∈ [0,1] is a real 
parameter. This last defines the spin polarization in the mode α.  
 
In addition, the evidence 5̂² ≥ 0 leads to get |f�:| ≥1&(|f�:| ≥ 1 such as both operators are complex. The four-
impulse operators become identical to the usual definition in 
Quantum Mechanics, if f�: = 1; otherwise, the parameters are 
relative to any macroscopic object. Due to the operators 
opposite signs, the vacuum equivalent object is in reality the 
virtual anti-object, i.e. each operator represents a virtual entity. 
 
We can now tell that any object disturbing the vacuum is either 
a fermion or a set of fermions generating its opposite as a mass 

or charge default. This means that fermions are the primmest 
particles we can have. As any field describes with phonons or 
bosons, we deduct that each of them is a fermion-antifermion 
coupling. Without disturbing object, fundamental particles 
composed then the vacuum. Consequently, the vacuum is full of 
bosons and antibosons, which react to any object presence 
creating a default. Its structure in equilibrium state can only be 
homogeneous and isotropic. This corresponds to the cubic 
structure with centered faces.  
 
Figure-1 illustrates the vacuum structure in its equilibrium state. 
The best scenario is that of locally oscillating couples of scalar 
and vector bosons or the opposites on faces. The vector 
component rotates around the scalar component, depending on 
the particle velocity. The six bosons and six antibosons (scalar 
or vector) for one cube are justifiable from three fermions 
(P�, P�, PW) and three antifermions (P�̅, P�̅, PW̅), i.e. the couples 
(P�P�̅, P�PW̅, P�P�̅, P�PW̅, PWP�̅, PWP�̅) for each state. The two 
following sections show the steps for the interacting field 
determination with such a vacuum. 
 
Explicit field equations in the vacuum: To know these, it is 
necessary to determine explicitly the equation quantities. 
Thence, we apply the conservation relativistic rule of the scalar 
product of four-vectors. 
 

For the scalar field, the operators in the couple system write 5{∥ = 1h�	�f∥;  5{∥′ = −1h�	�f∥′ . Then ce5{∥5{∥′ = 	²�² so that the 
equation (5) transforms into the familiar form 

�∥18�9∥ 〉� = *|�
�

,� 18�9∥ 〉�             (15) 
 

According to the equation interpretation, elastic shocks also 
occur in terms of electric, weak or strong charges. That is, we 
have to find out the corresponding four-impulses in any couple 
system. Considering the particle intrinsic voltage } as acting 
between both entities, we write 5{B = 1h�fB~}/�² ;  5{B′ =−1h�fB′ ~}/�². Then ce5{B5{B′ = ~²}²/�
 and the equation (5) 
translates by 

�B18�9B 〉� = *��
��²

,� 18�9B 〉�              (16) 
 
The intrinsic voltage depends on the charge unity. With the 
gravitational field, q is identical to the mass m and U to ��. 
 
One remarks that both scalar and vector fields are unified for the 
same source factor or equal normalized four-impulses at rest 
(5{∥5{∥′ = 5{B5{B′ c²) such as  	��
 = ~²}² ⇒ 	�² = ∓~}           (17) 
 
For illustration, the intrinsic voltage of electrons or positrons in 
the vacuum is, } = 0.5MI since 	 = ±0.5�)I/�� and ~ = ).  
 
Eigen states of fields: The quantum solutions of equations (15) 
and (16) are those of a free particle and express under the 
following form for any component j in spherical coordinates 
((, p, �): 
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H8�9α 〉��,|� = Aα,�,|� ���(���|�p, ��	 = −�, −� + 1, . . , � − 1, � �                          (18) 

 
Where: l = integer representing the kinetic momentum number. 

m = that of its projection on an axis; Aα,�,|�  is anintegration 
complex constant; ���(� and ��|�p, �� are the normalized radial 
and spherical functions respectively, defined by: 
 

��
�
�� R�±�kr� = �−1�� * ������,� �±���

�
��|�θ,φ� = �−1�|�i������Y��� ��X|�!��Y|�! P�|�cos�θ�� � ¡φ

√�π
P�|�cos �θ�� = ��£�! sin| �θ� ¥£¦§

C¥+¨©�θ�F£¦¡ C−e1r��θ�F�
�        (19) 

 
k is the particle wave number. The normalized solutions 
represent wave functions; this implies, indeed, there quired 
relationships between these and the particle fields. The 
probability to find a particle at a given position is equivalent to 
the field intensity at that position.  
 
The field expressions get from the Table-1 definitions. Both 
scalar and vector fields are quantified. In the primmest cases of 
fundamental particles where fα = 1, l=0 for the scalar field 
(8�9∥ 〉�) and l=1 for the vector field (8�9B 〉�); otherwise for 

(|fα| > 1), the component general solution is the linear 
combination on all l values. This shows that even macroscopic 
objects have quantum solutions with scalar and vector bosons of 
higher values (l≫1); the gravitation quantization is obvious for 
one object in the vacuum. The next section examines the case of 
one object interacting with others.   
 
Interpreting interaction with general relativity: The gauges 
expressions given in Table-1 are available whatever the field 
source is; the object velocity can vary in space-time. However, 
we assumed in the construction procedure of gauges that the 
four-potentials remain unchanged at any space-time position, 
i.e. for an isolated object. For an interacting object with another, 
the transformation from a potential to another can be different. 
The relations (8) and (9) write now 
 

H cAKK�∥′ = ±µ R ∇KK�V∥�M2IB′ = ±�« R ∇KK�BAKK�B�²M2� ⇒ HAKK�∥′ = µAKK�∥IB′ = «VB
�                         (20) 

 
Where: µ and η are dimensionless factors indicating respective 
changes. With the space-time symmetry, there are scalars; 
otherwise, µ is a tensor 3x3 in three dimensions space. We 
consider here the most general case of that symmetry. There are 
two cases in respect to the factors nature. 

 

 
Figure-1: Vacuum equilibrium state:  each couple represents a scalar component (bigger circle) and a vector component (smaller 
circle); each component is either a boson or an antiboson facing the opposite. 
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Case of constant factors: vacuum instability: The substitution 
in the gauge relations allows deducing the complementary 
relations V∥′ = µV∥   and AKK�B′ = «AKK�B ) so that we can write �8A∥′ �〉 = ¬µ 00 µ

­®̄ °̄ ±
µ_

�8A∥ �〉 ;  �8AB′ �〉 = �¬« 00 «­®°±²_
8AB �〉            (21) 

�〈AB′ �8A∥′ �〉 = �〈AB �8«̂ �µ_8A∥ �〉              (22) 
 
If «̂µ_ = 1 then the scalar product between both states is 
constant. We remain within the Special Relativity framework 
for unit factors corresponding to isolated and stable objects. In 
the general case («̂µ_ ≠ 1), we have partial fields explaining 
amplitudes partitions, reflections, refractions or decay processes 
in the vacuum; these lasts imply that the particle or the vacuum 
is instable. For two final partial-fields, the other field defines 
with the coefficients (1-µ) and (1-η).  
 
Case of variable factors: interaction process: The equations 
on AKK�∥′  and IB′  write from Table-1 relations by substituting the 
initial fields. We have 
 
�µX�AKK�∥′ = ∓∇KK�Γ∓ ; �BηX�VB′ = −∇KK�BEKK�±             (23) 
 
This situation is relative to General Relativity. The product («̂µ_) 
represents the metric tensor for any kind of field. In the simplest 
case, the modified fields yet describe waves with a different 
field source if we write 
�µX� = 0 ;  �BηX� = 0              (24) 
 
We can interpret the corresponding plane solutions as 
determining the interacting energy and impulse. According to 
the field nature and its resulting energy-impulse during the 
interaction, there is attraction or repulsion of the considered 
object. 
 
Results and discussion 

To highlight the theory, we interpret the vacuum behavior; 
propose to identify the field explaining its cubic structure and 
the possible unknown fermions. 
 
On the vacuum understanding: We determined the vacuum 
structure from the gauge couplings identification showing the 
existence of phonons in the vacuum. We showed that this 
generates each phonon accordingly to the particle or object. 
There are three kinds of elastic phonons, which correspond to 
fundamental bosons only for fermions travelling at the velocity 
of the light (� = �). Consequently, we deduce that: i. the wave 
nature justify with gravi-phonons, electro-phonons, weak-
phonons or strong-phonons; when the corresponding field is of 
long range. For the two lasts, it is non-fundamental bosons, i.e. 
when the wave bundle divides, as in experiments9,11. ii. Each 
field is defined elastically by three fermions and three bosons; 
inelastic shocks justify more fermions and bosons. iii. The 

interaction process from vector fields occur at the velocity of the 
light in advance to fundamental bosons, according to (24). 
 
Field structuring the vacuum: As in all known quantum 
theories, the vacuum is not empty as we obtained. The early 
Casmir effect is a reference illustrating the appearance of forces 
from nothing and many studies still refer to it12,13. One also 
observes the vacuum fluctuations or decays during 
interactions14,15 as it appears here. The structure we proposed is 
not however familiar to our knowledge. To identify the field 
structuring the vacuum, it is enough to bear in mind that the 
vacuum behaves accordingly to any field. Therefore, we can 
deduct that its bosons differentiate contextually to energy. These 
must then belong to the field defining the vacuum. Since its 
structure does not rely on a specific field, this can only be an 
anonymous field: the unified field originating all the others in 
respect to the stimulation. 
 
Fundamental fermions prediction: We saw that fundamental 
bosons determine by gauge unification (Table-2) from 
equivalent four-potentials. Each one is composed of one 
fermion and one antifermion according to the four-impulses. 
Therefore, each photon, graviton, weak boson or strong boson is 
such a coupling. Even if one does not yet have details on the 
others, the decay of weak bosons illustrates the fact, e.g. with ´X ⇄ )X + ν¶�. Therefore, we have to expect finding 
fundamental fermions and antifermions of the electromagnetic, 
gravitational and strong fields too. The boson-fermion 
symmetry is natural in the way. 
 
Conclusion 

We began by associating both scalar and vector fields to a free 
particle from the Dirac equation and Ade Broglie wave equation 
respectively. This last defines in the kinetic momentum space-
time. The field four-potentials are quantum states representing 
the interaction particle-vacuum. We generalized those equations 
and found four gauge couplings applying a simple procedure of 
gauge construction. These describe waves associated to any 
particle whatever is the field. We showed that the unification of 
both coupling gauges defines associated fundamental bosons, 
which are like phonons in crystals. 
 
The phonon concept allows deducing a vacuum elastic structure 
we represented. We found that this is made of undetermined 
bosons and antibosons we attributed to the unified field 
originating all others. The three elastic bosons and their 
opposites composed of fermions and antifermions of spins 1/2 
and -1/2. The spin appears as a property of the space-time 
symmetry defining fundamental fermions. However, we showed 
that the field equations are available for any microscopic or 
macroscopic object. We indicated the Eigen states of fields, 
showed that the gauge breaking explains decay processes of any 
kind as well as interaction processes. These put in evidence the 
General Relativity necessity with any fundamental field. 
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