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Abstract 

The twisted plate has various applications in turbine blades, compressor blades, fan blades and particularly in gas turbines. 

Many of these plates are subjected to in-plane load due to fluid or aerodynamic pressures. Buckling of such plates is of 

special importance especially if the plates are thin. Hence it is necessary to study their behaviour under different types of 

loads.. For a complete buckling study, a geometrically nonlinear analysis should be carried out. In a geometrically nonlinear 

analysis, the stiffness matrix of the structure is updated between loading increments to take into account deformations which 

affect the structural behaviour unlike a linear buckling analysis where the stiffness matrix is constant through the analysis. 

.The buckling of twisted plates is investigated by a nonlinear analysis. The effect of number of layers, changing angle of 

twist, width to thickness ratio, aspect ratio, etc are studied. It is observed in all cases that the buckling load by nonlinear 

analysis is lesser than that predicted by a linear analysis which proves the importance of the present study. 
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Introduction 

Laminated composite plates have increasing applications due to 

their high stiffness and strength-to-weight ratios, high fatigue 

life, resistance to corrosion and other properties of composites. 

The plates are often subjected to axial periodic forces due to 

axial components of aerodynamic or hydrodynamic forces 

acting on it. These can be designed through the variation of fibre 

orientation and stacking sequence to obtain an efficient design. 

For a complete buckling study, a geometrically nonlinear 

analysis should be carried out. Nonlinearity due to material and 

boundary conditions can also be investigated if required. 

Material nonlinearity during buckling is due to yielding or 

boundary nonlinearity. Modelling of nonlinear effects should be 

done in such a way so as to assess the results of additional 

modelling at every stage. This helps to understand the structural 

behaviour. A nonlinear analysis calculates actual displacements 

and stresses as opposed to linear buckling analysis, which only 

calculates the potential buckling shape. A nonlinear analysis is 

required when the stiffness of the structure changes due to the 

deformation of the structure. In a nonlinear analysis, the 

stiffness does not remain same. It has to be changed with 

changing geometry or material property. If the change in 

stiffness is only due to change in shape, then the nonlinear 

behaviour is defined as geometric nonlinearity. If it is due to 

changing material property, then the nonlinear behaviour is 

defined as material nonlinearity. A linear buckling analysis can 

be applied to compute the Euler buckling load, i.e., the load 

under which a structure will buckle. Assumptions used in the 

FEA model may result in the predicted buckling load being 

much higher in the FEA model than for the actual structure. The 

results of the linear buckling analysis should be used carefully. 

A nonlinear buckling analysis of a structure, thus helps to 

understand the results in a better way. 

 

A large amount of research has been devoted to the analysis of 

vibration, buckling and post buckling behaviour, failure and so 

on of such structures. Bauer and Reiss studied the nonlinear 

deflections of a thin elastic simply-supported rectangular plate
1
. 

They proved that the plate cannot buckle for thrusts less than or 

equal to the lowest eigenvalue of the linearized buckling 

problem. Crispino and Benson studied the stability of thin, 

rectangular, orthotropic plates which were in a state of tension 

and twist
2
. A computational model for buckling and post 

buckling analysis of stiffened panels was developed by Byklum 

and Amdhal which provided accurate results for use in design of 

ships and offshore structures
3
. Nonlinear buckling analysis of 

shear deformable plates was studied by Purbolaksono and 

Aliabadi
4
. Shaikh Akhlaque-E-Rasul and Ganesan

 
developed a 

simplified methodology to predict the stability limit load that 

required only two load steps
5
. Lee determined the critical 

buckling pressure of a submarine using Finite Element Analysis 

(FEA)
6
. Sofiyev et al examined the buckling behaviour of cross-

ply laminated non-homogeneous orthotropic truncated conical 

shells under a uniform axial load 
7
. Alinia et al investigated the 

inelastic buckling behavior of thick plates under interactive 

shear and in-plane bending
8
. Buckling of a cantilever plate 

uniformly loaded in its plane was studied by Lachut and Sader
9
. 

The nonlinear buckling and post-buckling behaviour of 

functionally graded stiffened thin circular cylindrical shells 

subjected to external pressure were investigated by Dao Van 

Dung and Le Kha Hoa
10

. Dao HuyBich et al presented an 

analytical approach to investigate the nonlinear static and 

dynamic buckling of imperfect eccentrically stiffened 
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functionally graded thin circular cylindrical shells subjected to 

axial compression
11

. Yuan and Wang studied the non

buckling analysis of inclined circular cylinder

discrete singular convolution
12

. Shariyat
 

buckling of imperfect sandwich plates subjected to thermo

mechanical loads
13

. Danial Panahandeh-Shahraki

laminated composite cylindrical panels resting on tensionless 

foundation under axial compression
14

. Using higher order shear 

deformation theory, buckling of composite plate assemblies was 

studied by F.A. Fazzolari et al
15

. 

 

 The laminated composite panels are primarily used in 

shipbuilding, aerospace and in engineering constructions as 

well. These structures are highly sensitive to geometrical and 

mechanical imperfections. The defects include different 

directions of fibre, variations in thickness, delamination or 

initial deformations. Plates in a ship structure are subjected to 

any combination of in plane, out of plane and shear loads

to the geometry and nature of loading of the ship hull, buckling 

is one of the most important failure criteria of these structures.

 

The twisted cantilever panels have significant applications in 

turbine blades, compressor blades, fan blades, aircraft or marine 

propellers, chopper blades, and predominantly in gas turbines. 

Today twisted plates are key structural units in the research 

field. Because of the use of twisted plates in turbo

aeronautical and aerospace industries and so on, it is mandatory 

to understand both the buckling and vibration characteristics of 

the twisted plates. The twisted plates are also subjected to loads 

due to fluid pressure or transverse loads
16

. 

 

Methodology 

For complex geometrical and boundary conditions, analytical 

method are not so easily adaptable, so numerical methods like 

finite element method have been used
15

formulation is developed here by for the structural analysis of 

composite twisted shell panels using first order shear 

deformation theory. ANSYS software which is a finite element 

software has been used for the study. 

 

The hardness of a structure changes due to the change in shape 

of the construction during its deformation under loads or due to 

material property changing due to large distortions. If the 

deformation is small, and so it may be taken for granted that the 

configuration or material property does not change, that is the 

initial stiffness of the structure does not vary with the deformed 

configuration
17

. This is the fundamental assumption in a linear 

analysis.  

 

The plate is made up with bonded layers, where each lamina is 

considered to be homogenous and orthotropic and made of 

unidirectional fiber-reinforced material. The orthotropic axes of 

symmetry in each lamina are oriented at an arbitrary angle to 

plate axes. The present study mainly aims to analyse the 

laminated composite twisted plates under the in plane loading 
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laminated composite twisted plates under the in plane loading 

conditions shown in figure-1. Methodology involves the linear 

buckling and nonlinear buckling analysis of twisted plates. The 

present work consists of developing FEA models of a laminated 

composite twisted plate under an in plane load.

 

Figure

Laminated composite twisted panel with in

 

Formulations: Governing Differential Equations

governing differential equations of equilibrium 

deformable doubly curved pretwisted panel subjected to 

external in-plane loading can be expressed as

 ����� �	������ 		12� 1
� 	 1
��� 	�� ������ 	������ �	����� �	12� 1
� 	 1
��� 	�� ������ 	����� �	����� 		��
� 	 ��
� 	 2
� 	�� ������  ����� �	������ 		�� �	�� ���������� �	����� 		�� �	�� �������

 

Also ��  and ��  are the external loading in the X and Y 

direction respectively. The constants

radii of curvature in the x and y directions and the radius of 

twist. !��,��, �#$ � ∑ & !'$()*)*+,-(.�
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1. Methodology involves the linear 

buckling and nonlinear buckling analysis of twisted plates. The 

of developing FEA models of a laminated 

composite twisted plate under an in plane load. 

 
Figure-1 

Laminated composite twisted panel with in-plane loads 

Governing Differential Equations: The 

governing differential equations of equilibrium of a shear 

deformable doubly curved pretwisted panel subjected to 

plane loading can be expressed as
17

,
18

. 

������� �	��
� �	 ��
�� 		� 	�� ��/����  

������� �	��
� �	 ��
�� 		� 	�� ��/����  ���
�� �	�� ������ � �� ������
 �/���� 	� 	�� ������  

� 	� 	�� ��0���	               (1) 

are the external loading in the X and Y 

direction respectively. The constants	
�,	
� and 
�� are the 

radii of curvature in the x and y directions and the radius of 

! $(!1, 1, 1�$21               (2) 
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Where: n= number of layers of the laminated composite twisted 

curved panel and !'$( = mass density of	3�4	layer from the mid-

plane. 

 

First order shear deformation theory is used and the 

displacement field assumes that the mid –plane normal remains 

straight before and after deformation, but not necessarily normal 

after deformation, so that 

u(x,y,z)= � (x,y)+ z /�(x,y) 

v(x,y,z)= � (x,y)+ z /�(x,y)                  (3) 

w(x,y,z)= � (x,y) 

 

Where u, v, w and � , � , �  are displacement in the x, y, z 

directions at any point and at the mid surface respectively /�562 /� 	and are the rotations of the midsurface normal about 

the x and y axes respectively. 

 

Strain Displacement Relations: Green-Lagrange’s strain 

displacement relations are used throughout. The linear strain 

displacement relations for a twisted shell element are: 7�8= 
�9�� � :;��13� 7�8= 
�0�� � :;��13� 

<��8= 
�9�� � �0�� � �:;���13��              (4) 

<�=8= 
�:�� � /� 	 9;� 	 0;�� 

<�=8= 
�:�� � /� 	 0;� 	 9;�� 

Where the bending strains are expressed as 3� � ����� , 3� � �����  

3�� � �����  + 
����� � �� ! �;� 	 �;�$!�0�� 	 �9��$              (5) 

 

The linear strains can be expresses in term of displacements as: 

{>} = [B] {2?}                  (6) 

 

Where,{2?}={������/��/��… . �C�C�C/�C/�C}             (7) 

[B] = [[D�] , FD�]. .  ……………… . FDC]]               (8) 

FDG]=

HI
II
II
II
II
J�G,� 0 LM;� 			0 		0
0 �G,� LM;� 			0 		0
�G,�00000

�G,�00000

2 LM;�� 		0 		00 �G,� 	0		0			 	0 			�G,�0 �G,� �G,�	�G,��G,� 		�G		0 			0			�GNO
OO
OO
OO
OO
P

               (9) 

 

Constitutive Relations: The basic composite twisted curved 

panel is considered to be composed of composite material 

laminates (typically thin layers). The material of each lamina 

consists of parallel, continuous fibers (e.g. graphite, boron, 

glass) of one material embedded in a matrix material (e.g. epoxy 

resin). Each layer may be regarded on a macroscopic scale as 

being homogeneous and orthotropic. The laminated fiber 

reinforced shell is assumed to consist of a number of thin 

laminates as shown in figure-3. The principle material axes are 

indicated by 1 and 2 and moduli of elasticity of a lamina along 

these directions are E11 and E22 respectively. For the plane stress 

state,Q .  

HII
IJ Q�Q�R��R�=R�=NOO

OP �
HI
II
J��� ��� 0 0 0��� ��� 0 0 00 0 �SS 0 00 0 0 �TT 00 0 0 0 �UU NO

OO
P
HII
IJ >�>�<��<�=<�=NOO

OP
              (10) 

 

Where ���= 
V,,!�W0,�0�,$ ���= 

V,,0�,!�W0,�0�,$ 
 ���= 

0,�V��!�W0,�0�,$     ���= 
V��!�W0,�0�,$              (11) 

 �SS= X��            �TT= kX�# 

 �UU= 3X�# 

 

The on –axis elastic constant matrix corresponding to the fiber 

direction is given by 

F�GY] 	� 	
HI
II
J��� ��� 0 	0 	0��� ��� 	0 0 	00 0 �SS 0 	00 0 	0 �TT 0	0	0		0		0		�UU NO

OO
P
               (12) 

 

If the major and minor Poisson’s ratio are ν12 and ν21, then using 

reciprocal relation one obtains the following well known 

expression Z,�V,, � Z�,V��	               (13) 

 

Standard coordinate transformation is required to obtain the 

elastic constant matrix for any arbitrary principle axes with 

which the material principal axes makes an angle / .	Thus the 

off-axis elastic constant matrix is obtained from the on-axis 

elastic constant matrix as. 

[�\GY] �
HI
III
J�\�� �\�� �\�S 	0 	0�\�� �\�� �\�S 0 	0�\�S �\�S �\SS 0 	0		0 	0 	0 	�̂TT �\TU		0 	0 	0 	�\TU �\UU NO

OOO
P
            (14) 

F�\GY] 	� F_]`]F�GY]F_]                 (15) 

 

Where:T is transformation matrix. After transformation the 

elastic stiffness coefficients are: �\�� �	���aT � 2!��� � 2�SS$a�6� � ���6T �\�� � !��� � ��� 	 4�SS$a�6� � ���!aT � 6T$ �\�� � ���6T � 2!��� � �SS$a�6� � ���aT      (16) �\�S � !��� 	 ��� 	 2�SS$6a# � !��� 	 ��� � 2�SS$6#a �\�S � !��� 	 ��� 	 2�SS$a6# � !��� 	 ��� � 2�SS$a#6 �\SS � !��� � ��� 	 2��� 	 2�SS$6�a� � �SS!6T �aT$ 
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The elastic constant matrix corresponding to transverse shear 

deformation is �\TT � X�#a� � X�#6� �\TU � !X�# 	 X�#$a6               (17) �\UU � X�#6� � X�#a� 
 

Where: m = cos/ and n = sin/ 

The stress strain relations are 

HII
IJ
Q�Q�R��R�=R�=NOO

OP �
HI
III
J�\�� �\�� �\�S 0 		0�\�� �\�� �\�S 0 		0�\�S �\�S �\SS 0 		00 0 		0 �\TT �\TU0 0 	0 �\TU �\UU NO

OOO
P
HII
IJ >�>�<��<�=<�=NOO

OP
              (18) 

 

The forces and moment resultants are obtained by integration 

through the thickness h for stresses as 

 

HI
II
III
IJ ����������c��c���c NO

OO
OOO
OP
� 	 &

dee
f
eeg
Q�Q�R��Q�1Q�=R��1R�=R�= hee

i
eej4/�W4/� 21	               (19) 

 

Where:	Q� , Q�  are the normal stresses along X and Y 

directionR��, R�= and R�=  are shear stresses in xy, xz and yz 

planes respectively. 

 

Considering only in-plane deformation, the constitutive relation 

for the initial plane stress analysis is 

m �������n � 	op�� p�� p�Sp�� p�� p�Sp#� p#� pSSq r
>�>�<��s               (20) 

 

The extensional stiffness for an isotropic material with material 

properties E and v are 

Ftu] � 	
HII
IJ
V4�W0� V4�W0� 			00V4�W0� V4�W0� 			0			0 			0 V4�!�v0$NO

OO
P
               (21) 

 

The constitutive relationships for bending transverse shear of a 

doubly curved shell becomes 

dee
ef
eee
g ���u�������������� hee

ei
eee
j

HI
II
II
II
Jp�� p�� p�S D�� D��� D�S 0 	0p�� p�� p�S D�� D�� D�S 	0 	0p�S p�S pSS D�� D�� D�S 		0 	0D�� D�� D�S t�� t�� t�S 0 	0D�� D�� D�S t�� t�� t�S 0 	0D�S D�S DSS t�S t�S tSS 0 	00 		0 0 	0 0 		0 wTT wTU0 		0 0 	0 0 		0 wTU wUU NO

OO
OO
OO
P

de
ef
ee
g >�>�<��3�3�3��<�=<�=he

ei
ee
j

          (22) 

This can also be stated as rNyMyQy
s � |Ay~ By~ 0By~ Dy~ 0	0 	0 	Sy~� r

ε~k~
γ�
s           (23) 

{�� � Ft]{>�                (24) 

 

Where pGY , DGY, tGYand wGY  are the extensional, bending-

stretching coupling, bending and transverse shear stiffness. 

They may be defined as: pGY =∑ !���$\\\\\\(!1( 	 1(W�$-(.�  DGY =��∑ !���$\\\\\\(!1(� 	 1(W�� $-(.�  tGY =�#∑ !���$\\\\\\(!1(# 	 1(W�# $-(.� ; �, � � 1,2,6             (25) wGY =3 ∑ !���$\\\\\\(!1( 	 1(W�$-(.� ; �, � � 4,5 

 

And k is the transverse shear correction factor. The accurate 

prediction for anisotropic laminates depends on a number of 

laminate properties and is also problem dependent. A shear 

correction factor of5/6 is used in the present formulation or all 

numerical computations. 

 

Derivation of element matrices: The element matrices in 

natural coordinate system are deriver as: 

Element plane elastic stiffness matrix F3u] � 	 & & FDu]`Ftu]FDu]|�|272��W��W�             (30) 

 

Element elastic stiffness matrix F3?] � 	& & FD]`Ft]FD]|�|272��W��W�               (31) 

 

Where the shape function matrix 

F�] 	� 	
HI
II
J�G 0 	0 		0 	00 �G 	0 0 	00 0 	�G 0 	00 0 		0 �G 	00 	0 		0 	0 	�GNO

OO
P
 i=1, 2…..8            (32) 

 

Where: [B],[D],[N] are the strain-displacement matrix stress-

strain and shape function matrix and |�| is the Jacobian 

determinant.  

 

Geometric stiffness matrix: The element geometric stiffness 

matrix for the twisted shell is derived using the non-linear in-

plane Green’s strains with curvature component using the 

procedure explained by Cook, Malkus and Plesha
20

. The 

geometric stiffness matrix is a function of in-plane stress 

distribution in the element due to applied edge loading. Plane 

stress analysis is carried out using the finite element technique 

to determine the stresses and these are used to formulate the 

geometric stiffness matrices. 

 �� �	& FQ ]`{>-8�2�	�                 (33) 
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Displacement vs Load for a Cantilever plate with 

 

The non-linear strain components are as follow:>�-8 � �� ��9���� � �� ��0���� 		�� ��:�� 	 9;��� �
>�-8 � 12 ������

� � 12 ������
� 		12����� 	 �
�

<�-8 � ���� ������ � ���� ������ � ����� 	 �
��
 

Using the non-linear strains, the strain energy can be written as�� � & 4� �Q� ���9���� � ��9���� � ��:�� 	 9;����	�9;���� & 4��T �Q� ������� �� � ������ �� �� � Q� �����	�
 

This can also be written as 

 �� � �� & F�]�Fw]F�]2�	0        
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Figure-2 

Displacement vs Load for a Cantilever plate with different Angle of Twist for a non

linear strain components are as follow: � � �� 1� ������� �� � ������ ���       

��
� � 12 1� o��/��� �

� � ��/��� �
�q 

� ����� 	 �
�� �	1� ���/��� � ��/��� � � ��/��� ���/��� �  
linear strains, the strain energy can be written as � � � Q� ���9���� � ��9���� � ��:�� 	 9;���� � 2R�� ���9�� �9��� � �

������ �� � ������ ��� � 2R�� ¡������ ����� � � ������ ����� �¢�    
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different Angle of Twist for a non-linear analysis 

      (34) 

� ��0�� �0��� � ��:�� 	 9;�� ��:�� 	
               (35) 

      (36) 
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Where {f� � �¤¥¤¦ , ¤¥¤§ , ¤¨¤¦ , ¤¨¤§ , �¤©¤¦ 	 ¥ª«� , �¤©¤§ 	 ª̈¬� , ¤θ¤
And  

Fw] 	� 	
HI
II
JF­] 0 	0 	0 	00 F­] 	0 	0 	00 0 F­] 0 	00 0 	0 F­] 	00 	0 	0 	0 F­]NO

OO
P
       

 

Where  

F­] � 	 � Q� R�� R�� Q�   � 	 �4 � �� ��� ��� ��    
 

The in-plane stress resultants �� , �� and �
are obtained separately by plane stress analysis and the 

geometric stiffness matrix is formed for these stress resultants{�� � 	 FX]{®?�    

 

Where  {®?� � F�	�	�	/�/�]`   

 

The strain energy becomes �� � �� F®]�FX]`Fw]FX]{®�2� � 	 �� {®?�`F¯
 

Where the element geometric stiffness matrix	F ?̄]? �	& & FX]`Fw]FX]|�|272��W��W� 	    

FX] � 	

HI
II
II
II
II
J �G,� 0 	0 		0 	0�G,� 0 	0 0 	00 �G,� 	0 0 		00 �G,� 	0 0 		0000000

000000

�G,��G,�0000

00�G,��G,�00

0000�G,��G,�NO
OO
OO
OO
OO
P
  

 

 

Figure-3 

Laminated shell element showing principal axes and 

laminate directions
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� θ«¤¦ , ¤θ«¤§ , ¤θ¬¤¦ , ¤θ¬¤§ �°	   (37) 

        (38) 

           (39) 

��  at each Gauss point 

are obtained separately by plane stress analysis and the 

geometric stiffness matrix is formed for these stress resultants 

           (40) 

          (41) 

� F ?̄]?F®?]           (42) 

Where the element geometric stiffness matrix 

         (43) 

          (44) 

 

Laminated shell element showing principal axes and 

laminate directions 

Results and Discussion

Nonlinear buckling analysis is a static analysis through which 

we can incorporate the nonlinearities 

and end conditions. Here we consider the geometric nonlinearity 

only for our study. After analysing the plate for linear analysis 

we have to proceed for nonlinear analysis. We have to give a 

deformation by applying a small load at 

displacement obtained from linear buckling analysis. After 

giving a deformation we will get our analysis done with a 

geometric nonlinearity. The load will start decreasing after the 

solver extracts two number of modes, the load goes on

decreasing and then it will increase a little and continue to be 

constant. The load at which it starts increasing is the buckling 

load from nonlinear analysis which is less than the buckling 

load obtained from linear buckling. A graph is plotted between 

displacement and load at the node which was given deformation 

initially. This graph gives the buckling value.

 

Convergence study and validation of results

convergence study is first done for square isotropic plates 

clamped on all the edges for differen

shown in table-1. Based on this study, a 12 x 12 mesh was 

chosen for solving the problem.

 

Table

Convergence study of Non

square isotropic plate a/b=1, h = 1mm

λ=N

Mesh 

division 

Buckling load 

(kN/m)

6 x 6 204.10

8 x 8 200.30

10 x 10 199.72

12 x 12 199.65

Sandeep Sing et al
19

  

 

Variation of buckling load with aspect ratio for a/h of 100 with 

different ply lay-ups simply suppor

table-2. From table-2 it can be seen that the buckling load 

increases as the number of layers increases and as the aspect 

ratio increases, i.e., the buckling load is high for rectangular 

plates than square plates. Also it can be observed that the 

symmetrical arrangement of 4 layer ply has more buckling value 

than the 8 layer asymmetrical ply.

 

Also in all cases the non-linear buckling load is less than the 

linear buckling load. 

 

To validate the non-linear b

shows the comparison of the buckling loads for laminated 

composite square plates simply supported on all the edges and 

cantilever conditions, obtained by both linear and non

analysis. From the Table 3 and Table 4 i

aspect ratio increases the buckling load increases and then 

decreases for simply supported plates but whereas it remains 
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Results and Discussion 

Nonlinear buckling analysis is a static analysis through which 

we can incorporate the nonlinearities due to loading, supports 

and end conditions. Here we consider the geometric nonlinearity 

only for our study. After analysing the plate for linear analysis 

we have to proceed for nonlinear analysis. We have to give a 

deformation by applying a small load at the point of maximum 

displacement obtained from linear buckling analysis. After 

giving a deformation we will get our analysis done with a 

geometric nonlinearity. The load will start decreasing after the 

solver extracts two number of modes, the load goes on 

decreasing and then it will increase a little and continue to be 

constant. The load at which it starts increasing is the buckling 

load from nonlinear analysis which is less than the buckling 

load obtained from linear buckling. A graph is plotted between 

isplacement and load at the node which was given deformation 

initially. This graph gives the buckling value. 

Convergence study and validation of results: The 

convergence study is first done for square isotropic plates 

clamped on all the edges for different mesh divisions and is 

1. Based on this study, a 12 x 12 mesh was 

chosen for solving the problem. 

Table-1 

Convergence study of Non-dimensional buckling load (λ) of 

square isotropic plate a/b=1, h = 1mm, E = 210GPa, ν= 0.3, 

λ=Nxb
2
/E22h

3 

Buckling load 

(kN/m) 

Non-dimensional 

Buckling load 

204.10 10.200 

200.30 10.015 

199.72 9.986 

199.65 9.983 

9.96 

Variation of buckling load with aspect ratio for a/h of 100 with 

ups simply supported on all edges shown in 

2 it can be seen that the buckling load 

increases as the number of layers increases and as the aspect 

ratio increases, i.e., the buckling load is high for rectangular 

plates. Also it can be observed that the 

symmetrical arrangement of 4 layer ply has more buckling value 

than the 8 layer asymmetrical ply. 

linear buckling load is less than the 

linear buckling formulation, Table 3 and 4 

shows the comparison of the buckling loads for laminated 

composite square plates simply supported on all the edges and 

cantilever conditions, obtained by both linear and non-linear 

analysis. From the Table 3 and Table 4 it can be said that as the 

aspect ratio increases the buckling load increases and then 

decreases for simply supported plates but whereas it remains 
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almost same for the cantilever plates for the same stacking 

sequence. The buckling load found using the nonlinear analysis 

is again found lesser than the linear buckling load. 

 

Table-2 

Variation of buckling load with aspect ratio for a/h of 100 

with different ply lay-ups simply supported on all edges: a/h 

= 100, E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, G12 = 

5.95GPa, G23 = 2.96GPa 

a/b Lay ups 

Linear 

Buckling 

load, N/m 

Nonlinear 

Buckling 

load  

1 

0°/90°/0° 77970 76500 

0°/90°/90°/0° 81016 80000 

0°/90°/0°/90°/0°/90°/0°/90° 78537 76500 

2 

0°/90°/0° 268858 260000 

0°/90°/90°/0° 367000 365500 

0°/90°/0°/90°/0°/90°/0°/90° 334877 332420 

3 

0°/90°/0° 637851 632000 

0°/90°/90°/0° 821563 815000 

0°/90°/0°/90°/0°/90°/0°/90° 817963 812500 

 

Variation of buckling load with a/h ratio with different ply lay-

ups for a cantilever twisted plate with an angle of twist 10° is 

shown in table-5. From the results it is observed that as the a/h 

ratio decreases, that is thickness of the plate increases, the non-

linear buckling load increases for a particular ply orientation.  

 

Variation of buckling load with aspect ratio for a/h of 250 and 

angle of twist for a cantilever twisted plate is shown in table-6. 

From the results it can be said that the buckling value decreases 

with increase in angle of twist and aspect ratio for the same 

stacking sequence and side thickness ratio.  

 

The various graphs for nonlinear buckling analysis with 

different angle of twist which was plotted for Buckling Load Vs 

Displacement is shown in figure-2. From the graphs it’s clear 

shown that there is a sudden variation of displacement with a 

very small increase of load which gives the critical buckling 

load of the problem by nonlinear analysis. 

 

Table-3 

Comparison of linear and nonlinear buckling loads for a 

laminated composite plate[0°/90°/90°/0°] with different 

aspect ratio simply supported on all edges: a/h = 250 , E11= 

141.0GPa, E22 = 9.23GPa, υ12= 0.313, G12 = 5.95GPa, G23 = 

2.96GPa 

a/b 

Buckling load 

(Linear 

analysis)N/m 

Buckling load 

(Nonlinear analysis) 

N/m 

1 5211.3 5150 

2 23815 23000 

3 53598 52000 

 

Table-4 

Comparison of linear and nonlinear buckling loads for a 

laminated composite cantilever plate [0°/90°/90°/0°] with 

different aspect ratio: a/h = 250 , E11= 141.0GPa, E22 = 

9.23GPa, υ12= 0.313, G12 = 5.95GPa, G23 = 2.96GPa 

a/b 

Buckling load 

(Linear analysis) 

N/m 

Buckling load 

(Nonlinear analysis) 

N/m 

1 823.76 786 

2 823.28 765 

3 823.03 760 

 

Table-5 

Variation of buckling load with a/h ratio with different ply 

lay-ups for a cantilever twisted plate with an angle of twist 

10°: a/b = 1 E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, G12 = 

5.95GPa, G23 = 2.96GPa, Φ = 10° 

Lay ups 

Nonlinear Buckling load, 

N/m 

a/h=250 a/h=200 a/h=150 

0°/90°/0° 840 1631 3820 

0°/90°/90°/0° 396 1473 3495 

0°/90°/90°/0°/0°/90°/90°/0° 535 1036 2467 

 

Table-6 

Variation of buckling load with aspect ratio for a/h of 250 

and angle of twist for a cantilever twisted plate: a/h = 250, 

E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, G12 = 5.95GPa, 

G23 = 2.96GPa 

a/b 
Angle of 

Twist Φ 

Linear Buckling 

load N/m 

Nonlinear 

Buckling load 

N/m 

 

1 

10° 852.59 840 

20° 735.39 720 

30° 597.70 579 

 

2 

10° 763.42 751 

20° 569.01 560 

30° 426.88 420 

3 

10° 671.11 653.02 

20° 463.94 455 

30° 397.2 390 

 

Conclusion 

Instability may occur before a design bifurcation limit is 

reached. Understanding the large elastic displacement of these 

types of structures can prevent sudden buckling failures from 

applied operational and construction loads. 

 

As discussed earlier, the assumptions made in a linear buckling 

analysis leads to higher values of the buckling load than is 

obtained from a nonlinear buckling analysis. This can also be 

observed from the above studies for both flat and twisted 

composite plates. Hence the above study validates the necessity 

of a nonlinear buckling analysis, especially for structures whose 
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shape changes drastically during buckling as is the case for thin 

shell structures.  

 

From the studies on twisted plates, it is observed that as the 

aspect ratio increases, the buckling load increases for simply 

supported plates and decreases for cantilever plates but the 

nonlinear buckling load is less than linear buckling load. It is 

also observed that the buckling load increases with decrease in 

side to thickness ratio for the same aspect ratio for laminated 

twisted composite plate. Also observed from studies that as the 

angle of twist and aspect ratio increases, buckling load 

decreases. For a same angle of twist buckling load increases 

with no. of layers and for symmetric play ups. 
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