International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Thermal degradation mechanism of HDPE Nanocomposites containing Nano CaCO3

Author Affiliations

  • 1Department of Chemical Engineering, Islamic Azad University, Farhan Branch, IRAN
  • 2 Plastics Dept., Processing Faculty, IRAN Polymer and Petrochemical Institute (IPPI), Tehran, IRAN
  • 3

Res. J. Engineering Sci., Volume 3, Issue (6), Pages 15-28, June,26 (2014)

Abstract

In this study high-density polyethylene (HDPE)/ maleic anhydride grafted polyethylene (PE-g-MA) nanocomposites, containing 1, 3, 5 wt.% of CaCO3 nanoparticles were provided by melt mixing process. Attendance of nanoparticles in PE matrix and addition of PE-g-MA led to enhancement of thermal stability of nanocomposites which proved by TGA analysis. In addition, kinetics of thermal decomposition of HDPE and its nanocomposites were examined. Addition of nano-particles led to enhancement of activation energy and degree of conversion.

References

  1. Galli P. and Vecellio G.J., Polyolefins: The most promising largevolume materials for the 21st century., Journal of Polym Sci Part A: Polymer Chemistry., 42(3), 396–415 (2003)
  2. Krishnaswamy R.K., Influence of wall thickness on the creep ruptures performance of polyethylene pipe., Polym Eng Sci, 47(4), 516-521 (2007)
  3. Yang Y., Zhang J., Zhou Y., Zhao G, He C. and Li Y., et al. Solution-processable organic molecule with triphenylamine core and two benzothiadiazole–thiophene arms for photovoltaic application, J Phys Chem C, 114(8), 3701-3706 (2010)
  4. Chrissafisa K., Paraskevopoulosa K.M., Pavlidoua E. and Bikiaris D., Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles, Thermochimica Acta, 65(1-2), 65–71 (2009)
  5. Hoŕng E.M. and Lowe D., Lifetime prediction of a blue PE100 water pipe., Polym Degrad Stab 93(8), 1496 (2008)
  6. Weon J., Effects of thermal ageing on mechanical and thermal behaviors of linear low density polyethylene pipe., Polym Degrad Stabil., 95(1), 14 (2010)
  7. Potyrailo R.A., Wroczynski R.J, Morris W.G. and Bradtke G.R., Determination of oxidative stability of polypropylene using chemical sensors, Polym Degrad Stabil, 83(3), 375 (2004)
  8. Ragnarsson L. and Albertsson A.C., Total luminescence intensity as a tool to classify degradable polyethylene films by early degradation detection and changes in activation energy, Biomacromolecules, 4(4), 900 (2003)
  9. Wu C.H., Chang C.Y., Hor J.L., Shih S.M., Chen L.W. and Chang F.W., On the thermal treatment of plastic mixtures of MSW: Pyrolysis kinetics., Waste Manage, 13(2), 221(1993)
  10. Park J.W., Oh S.C., Lee H.P., Kim H.T. and Yoo K.O., A kinetic analysis of thermal degradation of polymers using a dynamic method., Polym. Degrad. Stabil, 67(3), 435-441 (2000)
  11. Bockhorn H., Hornung A. and Schawaller H., Kinetic study on the thermal degradation of polypropylene and polyethylene., Anal. Appl. Pyrol, 48(2), 93-99 (1999)
  12. Kim H.T. and Oh SC, J. Kinetics of thermal degradation of waste polymer., Ind.Eng.Chem 11(2), 658-639 (2005)
  13. Xu N., Zou J., Shi W., Feng J. and Gong M., Unsaturated hyperbranched polyester as a surface modifier of CaCO3 and enhanced effect on mechanical properties of HDPE/CaCO3 composites., Polym. Adv. Technol., 16(5), 378 (2005)
  14. Elleithy R.H., Ilias A., Muhammad Alhaj A. and Al-Zahrani S.M., High density polyethylene/micro calcium carbonate composites: A study of the morphological, thermal, and viscoelastic properties., J Appl Polym Sci., 117(4), 2413-2421 (2010)
  15. Deshpande D.P., Warfade V.V., Amaley S.H. and Lokhande D.D., Petro-Chemical Feed stock from Plastic Waste., Research Journal of Recent Sci., 1(3), 63-67 (2012)
  16. Poostforush M., Al-Mamun M. and Fasihi M., Investigation of Physical and Mechanical Properties of High Density Polyethylene/Wood Flour Composite Foams, Research Journal of Recent Sci., ), 15-20 (2013)
  17. Mudigoudra B.S., Masti S.P., Chougale R.B., Thermal Behavior of Poly (vinyl alcohol)/ Poly (vinyl pyrrolidone)/Chitosan Ternary Polymer Blend Films, ResearchJournal of Recent Sciences.,1(9), 83-86 (2012)
  18. Zehtabeyazdi A., Zebarjad S.M., Sajjadi S.A. and Abolfazli Esfahani, J. On the Sensitivity of Dimensional Stability of High Density Polyethylene on Heating Rate, Express Polymer Letters, 1(2), 92-99 (2007)
  19. Saeedil M., Ghasemi I., Karrabi M., Thermal Degradation of Poly(vinyl chloride): Effect of Nanoclay and Low Density Polyethylene Content, Iranian Polymer Journal, 20(5), 423-429 (2011)
  20. Vyazovkin S., Wight C.A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochimica Acta., 340-341, 53-68 (1999)
  21. Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis., Anal.Chem 29(11), 1702-1706 (1957)
  22. Freeman E.S., Carroll B., The application of thermo analytical techniques to reaction kinetics. I. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate., J.Phys.Chem, 62(4), 394-397 (1958)
  23. Peterson J.D., Vyazovkin S., Wight C.A., Kinetics of the Thermal and Thermo-Oxidative Degradation of Polystyrene, Polyethylene and Poly(propylene)., Macromol. Chem. Phys. 202(6), 775-784 (2001)
  24. Friedman, Thermal Degradation of Char-forming Plastic from Thermogravimetery Application to Phenolic, J. Polym. Sci. C., 6(1), 183-195 (1963)
  25. Sahebian H., Zebarjad S.M., Sajjadi S.A. and Sherafat Z., The Effect of Nano- Sized Calcium Carbonate on Thermodynamic Parameters of HDPE, J. Mater. Process. Manuf. Sci.,209(3), 1310-1317 (2009)
  26. Chrissafis K., Paraskevopoulos K.M., Tsiaoussis I., Bikiaris D., Comparative study of the effect of different nanoparticles on the mechanical properties, permeability and thermal degradation mechanism of HDPE., J Appl Polym Sci, 114(3), 1606-1618 (2009)
  27. Vassiliou A., Papageorgiou G.Z., Achilias D.S., Bikiaris D.N., Macromol. Non-Isothermal Crystallisation Kinetics of In Situ Prepared Poly(-caprolactone)/Surface-Treated SiO2 Nanocomposites, Chem. Phys.,208(4), 364-376 (2007)
  28. Shentu B., Li J., Weng Z., Effect of Oleic Acid- Modified Nano-CaCO3 on the Crystallization Behaviour and Mechanical Properties of Polypropylene., Chin. J. Chem. Eng., 14(6) 814-818 (2006)
  29. Ujhelyiová A., Slobodová M., Ryba J., Borsig E., Vencelová P., The Effect of Inorganic Nanoadditives on the Thermal, Mechanical and UV Radiation Barrier Properties of Polypropylene Fibres, Open Journal of Organic Polymer Materials, 2(2), 29-37 (2012)