

Research Journal of Engineering Sciences _ Vol. **2(9)**, 1-6, September (**2013**)

Influence of Cutting Parameters on Turning Process Using Anova Analysis

D.V.V. Krishan Prasad R.V.R. and J.C. College of Engineering Guntur, INDIA

a and the conege of Engineering Cantar, in

Available online at: www.isca.in Received 30th Aguest 2013, revised 10th September 2013, accepted 23rd Septeber 2013

Abstract

In a turning process surface roughness depend on machining parameters and tool geometry. In this work considering three machining parameters and two tool geometrical parameters 243 experiments were conducted for full factorial design. Using ANOVA analysis the influence of these parameters on surface roughness was studied.

Keywords: Optimization, machining parameters, ANOVA, rake angles, surface finish.

Introduction

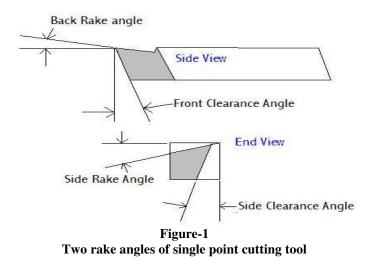
In Single pass turning the conditions during cutting such as cutting speed, feed rate and depth of cut should be selected to optimize the surface roughness. The selection to efficient machining parameters such as machining speed, feed rate and depth of cut has a direct impact in the metal cutting processes. The cutting tool geometry such as back rake, side rake also slightly affects the surface roughness.

The major efforts of earlier works were concentrated on optimization of machining parameters and not concentrated on geometry of cutting. In this work we tried to find influence of machining parameters and tool geometry on surface roughness.

Machining parameters in turning process: In metal cutting, there are many factors related to process planning for machining operations. These factors can be classified as: i. Type of machining operations (turning, facing, milling, etc.), ii. Parameters of machine tools (rigidity, horse power, etc.), iii. Parameters of cutting tools (material, geometry, etc.), iv. Parameters of cutting conditions (cutting speed, feed rate, depth of cut, etc.), v. Characteristics of work pieces (material, geometry, etc.).

Among these factors cutting parameters (speed, feed rate and depth of cut) and tool geometry (back rake, side rake) are evidently dominating ones in a machining operation.

Cutting Speed (v): The cutting speed of a tool is the speed at which the metal is removed by the tool from the work material. In a lathe it is the peripheral speed of the work part in m/min. $V = \pi DN/1000 \text{ (m/min)}$


Where D, N are diameter of work piece (mm) and cutting speed (rpm) respectively.

Feed (f): The feed of the cutting tool in lathe work is the distance, the tool advances for each revolution of the work piece in mm.

Depth of cut (*d*): The depth of cut is the perpendicular distance measured from the machined surface to the uncut surface of the work piece in mm.

Back rake angle: It is the angle provided from the cutting edge to the shank of a single point cutting tool, back rake is to help control the direction of the chip, which naturally curves into the work due to the difference in length from the outer and inner parts of the cut. It also helps counteract the pressure against the tool from the work by pulling the tool into the work piece.

5. Side rake angle: It is the angle provided between front face to the side of the single point cutting tool.

Side rake along with back rake controls the chip flow and partly counteracts the resistance of the work to the movement of the cutter and can be optimized to suit the particular material being cut. For a given machining operation determination of the optimum cutting conditions involves a conflict between maximizing the material removal rate and minimizing the surface roughness. The machining process optimization is to determine the most advantageous cutting condition. This is to determine optimal machining parameters such as v (cutting speed), f (feed rate), d (depth of cut) and the tool geometry back rake, side rake to optimize specified objectives such as surface roughness and MRR.

Literature-Survey: Gilbert¹ optimized of machining parameters in turning operation by considering maximum production rate and minimum production as objective functions. By expressing the production cost and production rate in terms of speed and feed rate Armaregoand Brown² and partially differentiating these terms with respect to speed and feed and equating to zero the optimum cutting conditions are obtained. Brewer and Rueda³ obtained number of nomograms for facilitating the determination of the economic machining conditions by employing the criterion of reducing the machining cost to a minimum for cast iron and steels. The usage of geometric programming for selection of machining variables were studied by Walvekar and Lambert⁴ and obtained optimized cutting speed and feed rate to optimize the production cost. By geometric programming Optimal selection of machining rate variables, was investigated by Petropoulos ⁵. A constrained unit cost problem in turning was optimized by using carbide tipped for machining SAE 1045 steel using a goal-programming technique in metal cutting for selecting levels of machining parameters in a fine turning operation on AISI 4140 steel using cemented tungsten carbide tools was studied by Sundaram⁶. constrained multi-pass machining problem was studied by Ermerand Kromodiharajo⁷ and concluded, multi-pass machining was more economical than single-pass machining if depth of cut for each pass was properly allocated. Hinduja⁸ et al considered minimum cost or maximum production rate as the objective function and calculated the optimum cutting conditions for turning operation for a given combination of tool and work material, considered surface finish, dimensional accuracy and power available as constraints. Lambert and Taraman⁹developed a mathematical model to evaluate the cutting force for turning SAE 1018 coldrolled steel with a carbide tool and utilized the model in the selection of levels of the machining variables such that the material removal rate could be at the highest possible value without violating the given force restrictions. Hassan and Suliman¹⁰ presented mathematical models for the prediction of cutting time, surface roughness, tool vibration, power consumption, while using tungsten carbide tools for turning medium carbon steel under dry conditions. El Baradie¹ developed of a surface roughness model while using tipped carbide tools for turning grey cast iron under dry conditions and with constant depth of cut. The mathematical model is utilizing the response surface methodology was developed in terms of cutting speed, feed rate and nose radius of the cutting tool. These variables were investigated using design of experiments and utilization of the response surface methodology. Using of

goal programming technique in for single pass turning operation. T.S. Sidhu¹² determined optimum values for speed and feed by setting different goals for a given set of conditions. Yen and Wright¹³ developed a unified method of adaptive control of constraints in which a suitable cutting region is determined satisfying all the physical constraints. The objective of the optimization is to maximize the production rate under constraints of plastic deformation, crater wear and fracture.

Problem: To find the optimum parameters in order to get the minimum surface roughness and to analyze the effect of machining parameters and rake angles on the surface finish. Design of experiments is the most useful and effective statistical quality control technique to investigate and individual interaction effects of process parameters. It isolates the effect of each input variable. Full factorial experiments consist of possible combinations of the levels of factors. Turning operation was carried out at 3 levels of the back rake, side rake; speed feed and depth of cut the range of parameters are shown in table 1

 Table-1

 Three levels with five parameters (3^5 factors design)

Levels	Rake A	ngle (°)	Speed	Feed	Depth of
	Back	Side	(rpm)	(mm/ rev)	cut (mm)
-1	8	12	250	0.1	0.5
0	11	15	350	0.3	1
1	14	18	550	0.5	1.5

Experimental Procedure: In this work mild steel is selected as the specimen, since it is mostly used structural steel. A mild steel rod of length around 20 ft has taken for this experiment. The lengthy rod was cut into 41 pieces as per required specifications. The Specifications used are ($\emptyset = 27mm, l = 150mm$) for the specimen with the cutting tool as high speed steel. On each work piece turning operation is performed for three variables like that 243 experiments are conducted on this 41 work pieces. Surface finish is measured using TALYSURF for 243 experiments. Results are tabulated in table 2

 Table-2

 Surface roughness at various cutting speeds

S.	Rake a	ngle (°)	Peed	Feed	Doc	Surface
No.	Back	Side	(rpm)	(mm/rev)	(mm)	Roughness
						(µm)
1	8	12	250	0.1	0.5	2.835
2	8	12	250	0.1	1.0	3.190
3	8	12	250	0.1	1.5	3.510
4	8	12	250	0.3	0.5	3.810
5	8	12	250	0.3	1.0	3.405
6	8	12	250	0.3	1.5	4.390
7	8	12	250	0.5	0.5	4.270
8	8	12	250	0.5	1.0	4.210
9	8	12	250	0.5	1.5	4.410

*Research Journal of Engineering Sciences*_____ Vol. **2(9)**, 1-6, September (**2013**)

S.	Rake a	ngle (°)	Peed	Feed	Doc	Surface	S.	Rake a	ngle (°)	Peed	Feed	Doc	Surface
No.			(rpm)	(mm/rev)	(mm)	Roughness (µm)	No.			(rpm)	(mm/rev)	(mm)	Roughness (µm)
10	8	12	350	0.1	0.5	2.265	61	8	18	250	0.5	0.5	4.320
11	8	12	350	0.1	1.0	2.545	62	8	18	250	0.5	1.0	4.445
12	8	12	350	0.1	1.5	2.475	63	8	18	250	0.5	1.5	5.110
13	8	12	350	0.3	0.5	3.200	64	8	18	350	0.1	0.5	2.415
14	8	12	350	0.3	1.0	3.160	65	8	18	350	0.1	1.0	2.200
15	8	12	350	0.3	1.5	3.720	66	8	18	350	0.1	1.5	2.510
16	8	12	350	0.5	0.5	4.345	67	8	18	350	0.3	0.5	3.080
17	8	12	350	0.5	1.0	3.890	68	8	18	350	0.3	1.0	2.550
18	8	12	350	0.5	1.5	4.600	69	8	18	350	0.3	1.5	3.210
19	8	12	550	0.1	0.5	2.200	70	8	18	350	0.5	0.5	4.120
20	8	12	550	0.1	1.0	1.665	71	8	18	350	0.5	1.0	3.730
21	8	12	550	0.1	1.5	2.080	72	8	18	350	0.5	1.5	3.925
22	8	12	550	0.3	0.5	2.940	73	8	18	550	0.1	0.5	2.115
23	8	12	550	0.3	1.0	2.410	74	8	18	550	0.1	1.0	1.795
24	8	12	550	0.3	1.5	2.885	75	8	18	550	0.1	1.5	2.255
25	8	12	550	0.5	0.5	3.765	76	8	18	550	0.3	0.5	2.800
26	8	12	550	0.5	1.0	3.735	77	8	18	550	0.3	1.0	2.640
27	8	12	550	0.5	1.5	4.170	78	8	18	550	0.3	1.5	3.440
28	8	15	250	0.1	0.5	3.050	79	8	18	550	0.5	0.5	3.825
29	8	15	250	0.1	1.0	2.750	80	8	18	550	0.5	1.0	3.480
30	8	15	250	0.1	1.5	3.150	81	8	18	550	0.5	1.5	4.105
31	8	15	250	0.3	0.5	3.605	82	11	12	250	0.1	0.5	2.840
32	8	15	250	0.3	1.0	3.710	83	11	12	250	0.1	1.0	2.805
33	8	15	250	0.3	1.5	3.830	84	11	12	250	0.1	1.5	3.190
34	8	15	250	0.5	0.5	4.125	85	11	12	250	0.3	0.5	3.615
35	8	15	250	0.5	1.0	4.230	86	11	12	250	0.3	1.0	3.590
36	8	15	250	0.5	1.5	5.030	87	11	12	250	0.3	1.5	3.725
37	8	15	350	0.1	0.5	2.485	88	11	12	250	0.5	0.5	4.450
38	8	15	350	0.1	1.0	2.570	89	11	12	250	0.5	1.0	4.075
39	8	15	350	0.1	1.5	2.800	90	11	12	250	0.5	1.5	5.065
40	8	15	350	0.3	0.5	3.385	91	11	12	350	0.1	0.5	2.230
41	8	15	350	0.3	1.0	2.920	92	11	12	350	0.1	1.0	1.795
42	8	15	350	0.3	1.5	3.430	93	11	12	350	0.1	1.5	2.570
43	8	15	350	0.5	0.5	3.960	94	11	12	350	0.3	0.5	2.760
44	8	15	350	0.5	1.0	4.155	95	11	12	350	0.3	1.0	2.830
45	8	15	350	0.5	1.5	4.230	96	11	12	350	0.3	1.5	3.360
46	8	15	550	0.1	0.5	2.145	97	11	12	350	0.5	0.5	3.960
47	8	15	550	0.1	1.0	2.060	98	11	12	350	0.5	1.0	3.355
48	8	15	550	0.1	1.5	2.425	99	11	12	350	0.5	1.5	4.340
49	8	15	550	0.3	0.5	2.600	100	11	12	550	0.1	0.5	2.110
50	8	15	550	0.3	1.0	2.670	101	11	12	550	0.1	1.0	2.035
51	8	15	550	0.3	1.5	3.160	102	11	12	550	0.1	1.5	2.440
52	8	15	550	0.5	0.5	3.870	103	11	12	550	0.3	0.5	2.840
53	8	15	550	0.5	1.0	3.580	104	11	12	550	0.3	1.0	2.635
54	8	15	550	0.5	1.5	4.150	105	11	12	550	0.3	1.5	3.375
55	8	18	250	0.1	0.5	2.905	106	11	12	550	0.5	0.5	3.590
56	8	18	250	0.1	1.0	2.605	107	11	12	550	0.5	1.0	3.725
57	8	18	250	0.1	1.5	3.195	108	11	12	550	0.5	1.5	3.980
58	8	18	250	0.3	0.5	3.380	109	11	15	250	0.1	0.5	2.335
59	8	18	250	0.3	1.0	3.225	110	11	15	250	0.1	1.0	2.290
60	8	18	250	0.3	1.5	3.740	111	11	15	250	0.1	1.5	3.040

*Research Journal of Engineering Sciences*_____ Vol. **2(9)**, 1-6, September (**2013**)

___ ISSN 2278 – 9472

Res. J. Engineering Sci.

S. No.	Rake a	ngle (°)	Peed (rpm)	Feed (mm/rev)	Doc (mm)	Surface Roughness	S. No.	Rake a	ngle (°)	Peed (rpm)	Feed (mm/rev)	Doc (mm)	Surface Roughness
112	11	15	250	0.3	0.5	(μm) 3.480	163	14	12	250	0.1	0.5	(µm) 2.195
112	11	15	250	0.3	1.0	3.405	164	14	12	250	0.1	1.0	2.320
113	11	15	250	0.3	1.5	3.780	165	14	12	250	0.1	1.5	3.120
115	11	15	250	0.5	0.5	4.725	165	14	12	250	0.1	0.5	3.120
116	11	15	250	0.5	1.0	4.410	167	14	12	250	0.3	1.0	3.150
117	11	15	250	0.5	1.5	4.850	167	14	12	250	0.3	1.5	3.340
118	11	15	350	0.0	0.5	2.145	169	14	12	250	0.5	0.5	4.170
119	11	15	350	0.1	1.0	1.925	170	14	12	250	0.5	1.0	3.710
120	11	15	350	0.1	1.5	2.480	170	14	12	250	0.5	1.5	4.320
120	11	15	350	0.3	0.5	3.210	172	14	12	350	0.1	0.5	2.250
122	11	15	350	0.3	1.0	2.940	172	14	12	350	0.1	1.0	1.780
123	11	15	350	0.3	1.5	3.220	174	14	12	350	0.1	1.5	2.360
124	11	15	350	0.5	0.5	3.795	175	14	12	350	0.3	0.5	2.670
125	11	15	350	0.5	1.0	3.640	176	14	12	350	0.3	1.0	2.480
126	11	15	350	0.5	1.5	4.440	177	14	12	350	0.3	1.5	3.115
127	11	15	550	0.1	0.5	2.040	178	14	12	350	0.5	0.5	3.560
128	11	15	550	0.1	1.0	2.110	179	14	12	350	0.5	1.0	3.345
129	11	15	550	0.1	1.5	2.260	180	14	12	350	0.5	1.5	3.915
130	11	15	550	0.3	0.5	3.040	181	14	12	550	0.1	0.5	1.890
131	11	15	550	0.3	1.0	2.560	182	14	12	550	0.1	1.0	1.580
132	11	15	550	0.3	1.5	3.080	183	14	12	550	0.1	1.5	1.970
133	11	15	550	0.5	0.5	3.220	184	14	12	550	0.3	0.5	2.740
134	11	15	550	0.5	1.0	3.375	185	14	12	550	0.3	1.0	2.400
135	11	15	550	0.5	1.5	3.900	186	14	12	550	0.3	1.5	2.665
136	11	18	250	0.1	0.5	2.815	187	14	12	550	0.5	0.5	3.175
137	11	18	250	0.1	1.0	2.600	188	14	12	550	0.5	1.0	2.885
138	11	18	250	0.1	1.5	3.275	189	14	12	550	0.5	1.5	3.400
139	11	18	250	0.3	0.5	3.440	190	14	15	250	0.1	0.5	2.465
140	11	18	250	0.3	1.0	3.250	191	14	15	250	0.1	1.0	2.560
141	11	18	250	0.3	1.5	3.870	192	14	15	250	0.1	1.5	2.435
142	11	18	250	0.5	0.5	4.465	193	14	15	250	0.3	0.5	3.335
143	11	18	250	0.5	1.0	4.210	194	14	15	250	0.3	1.0	2.920
144	11	18	250	0.5	1.5	4.700	195	14	15	250	0.3	1.5	3.045
145	11	18	350	0.1	0.5	2.350	196	14	15	250	0.5	0.5	3.920
146	11	18	350	0.1	1.0	2.475	197	14	15	250	0.5	1.0	3.400
147	11	18 18	350	0.1	1.5	2.580	198	14	15	250	0.5	1.5	4.120
148	11		350	0.3	0.5	3.345	199	14	15	350	0.1	0.5	1.460
149 150	11 11	18 18	350 350	0.3	1.0 1.5	2.580 3.555	200	14 14	15 15	350 350	0.1	1.0 1.5	1.370 2.060
150	11	18	350	0.3	0.5	3.555	201	14	15	350	0.1	0.5	2.060
151	11	18	350	0.5	1.0	3.730	202	14	15	350	0.3	1.0	2.275
152	11	18	350	0.5	1.0	3.740	202	14	15	350	0.3	1.0	2.420
155	11	18	550	0.5	0.5	2.040	204	14	15	350	0.3	0.5	3.385
154	11	18	550	0.1	1.0	1.880	205	14	15	350	0.5	1.0	3.205
155	11	18	550	0.1	1.5	2.280	200	14	15	350	0.5	1.0	3.640
150	11	18	550	0.1	0.5	3.170	207	14	15	550	0.3	0.5	1.700
157	11	18	550	0.3	1.0	2.205	208	14	15	550	0.1	1.0	1.605
150	11	18	550	0.3	1.5	3.215	20)	14	15	550	0.1	1.5	1.925
160	11	18	550	0.5	0.5	3.425	210	14	15	550	0.1	0.5	2.460
161	11	18	550	0.5	1.0	3.440	211	14	15	550	0.3	1.0	2.555
162	11	18	550	0.5	1.5	3.815	212	14	15	550	0.3	1.5	2.420

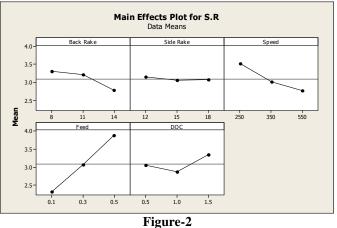
S. Rake angle (°)			Peed	Feed	Doc	Surface
No.			(rpm)	(mm/rev)	(mm)	Roughness
						(µm)
214	14 15		550	0.5	0.5	2.970
215	14	15	550	0.5	1.0	2.720
216	14	15	550	0.5	1.5	3.050
217	14	18	250	0.1	0.5	2.310
218	14	18	250	0.1	1.0	2.090
219	14	18	250	0.1	1.5	2.669
220	14	18	250	0.3	0.5	2.760
221	14	18	250	0.3	1.0	3.075
222	14	18	250	0.3	1.5	3.570
223	14	18	250	0.5	0.5	3.545
224	14	18	250	0.5	1.0	3.715
225	14	18	250	0.5	1.5	4.200
226	14	18	350	0.1	0.5	1.920
227	14	18	350	0.1	1.0	1.285
228	14	18	350	0.1	1.5	2.085
229	14	18	350	0.3	0.5	2.540
230	14	18	350	0.3	1.0	2.640
231	14	18	350	0.3	1.5	3.120
232	14	18	350	0.5	0.5	3.775
233	14	18	350	0.5	1.0	3.375
234	14	18	350	0.5	1.5	3.720
235	14	18	550	0.1	0.5	1.630
236	14	18	550	0.1	1.0	1.465
237	14	18	550	0.1	1.5	2.225
238	14	18	550	0.3	0.5	2.725
239	14	18	550	0.3	1.0	2.380
240	14	18	550	0.3	1.5	2.570
241	14	18	550	0.5	0.5	3.200
242	14	18	550	0.5	1.0	3.060
243	14	18	550	0.5	1.5	3.390

Results

ANOVA analysis is carried out on the data shown in table1 using MINITAB Software for surface roughness and results are tabulated in table3

Table-3	
Analysis of variance for surface roughness	

Source	DF	Seq	Adj	Adj	F	Р
		SS	SS	MS		
Back Rake	2	12.52	12.5	6.263	155.2	8.1
Side Rake	2	0.378	0.38	0.189	4.69	0.2
Speed	2	23.69	23.7	11.84	293.6	15.3
Feed	2	99.726	99.7	49.83	1236	64.3
DOC	2	9.355	9.35	4.677	115.9	6.05
Error	232	9.359	9.35	0.040		6.05
Total	242	155.03				


S = 0.200851 R-Sq = 93.96% R-Sq(adj) = 93.70%

Main effects plot and interaction plot are shown in figure .2 and figure-3

Conclusion

From figure-2it is observed that minimum surface roughness is obtained at a speed of 550 rpm, feed of 0.1 mm/rev, depth of cut of 1mm, side rake angle of 18° and back rake angle of 14° the surface finish is $1.465 \mu m$.

From table3 it is observed that feed is the significant parameter influencing surface roughness and side rake angle is having very less effect on surface roughness

Main Effects Plot

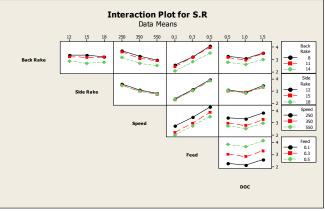


Figure-3 Interaction Plot

References

- 1. Gilbert W.W., Economics of Machining. In Machining Theory and Practice, *Am.Soc.Met.*, 476-480, (**1950**)
- 2. Armarego and Brown., The Machining of metals, Prentice Hall Inc, Englewood Cliffs, New Jersey, (1980)
- Brewer R.C. and Rueda R., A Simplified Approach to the Optimum Selection of Machining Parameters, *Eng.Dig.*, 24(9), 133-150 (1963)

- 4. Walvekar A.G. and Lambert B.K., An Application of Geometric Programming to Machining Variable Selection, *Int.J.Prod. Res.*, 8(3) (1970)
- Petropoulos P.G., Optimal Selection of Machining Rate Variables by Geometric Programming, *Int.Prod.Res*, 11, 305-314 (1973)
- Sundaram R.M., An Application of Goal Programming Technique in Metal Cutting, *Int.J.Prod.Res*, 16, 375-382 (1978)
- 7. Ermer D.S and Kromordihihardo., Optimization of Multi Pass Turning with Constraints, *J.Engg*, **103**, 462-468 (**1981**)
- 8. Hinduja S., Petty D.J., Tester.M, and barrow.G., calculation of Optimum Cutting Conditions for Turning Operation, *Proc.Int Mech. Engg.*, **199(B2)**, 81-92 (**1985**)
- 9. Lambert B.K and Taraman.K., development and Utilization of a Mathematical Model of a Turning Operation, *Int.J.Prod. Res.*, **11**, 69-81 (**1973**)
- **10.** Hassan G.A and Suliman.S.M.A., Experimental Modelling and Optimization of Turning Medium Carbon Steel, Int.J.Prod.Res, 1057-1065 (**1990**)
- 11. El Baradie M.A., Surface Roughness Model for Turning Grey Cast Iron, *Proc.Inst.Mech.Engg.*, 207, 43-50 (1993)
- 12. Sidhu.T.S., optimal selection of Machining Parameters by Using Goal Programming Technique in Single Pass Turning, Sixteenth National Convection of Mechanical Engineers and National Seminar on Future Trends In Mechanical Engineering, Research and Development,

Department of Mechanical Engineering and Industrial Engineering, University of Roorkee, 29-30, (**2000**)

- Yen D.W and Wright R.K., Adaptive Control Machining A New Approach Based on The Physical Constraints of Tool Wear Mechanisms, *ASME J. Engg. Ind.*, 105, 31-35, (1983)
- 14. D.V.V. Krishna Prasad and K. Bharathi, Multi-Objective Optimization of Milling Parameters for Machining Cast Iron on Machining Centre, *Res. J. Engineering Sci.*, 2(5), 35-39(2013)
- Reddy Sreenivasulu1 and Ch. SrinivasaRao, Design of Experiments based Grey Relational Analysis in Various Machining Processes - A Review, Res. J. Engineering Sci., 2(1), 21-26, (2013)
- **16.** M. Mangesh R. Phate, Tatwawadi V.H.and Modak J.P., Modeling and Simulation of Productivity in the Turning of Ferrous and Nonferrous Material using Artificial Neural Network and Response Surface Methodology, *Res. J. Engineering Sci.*, **2**(**3**), 37-44 (**2013**)
- Reddy Sreenivasulu and Ch.SrinivasaRao, Application of Grey Based - Taguchi Method to Determine Multiple Performance Characteristics in Drilling of Aluminium Alloys – Review, *Research J. Engineering Sci.*, 2(3), 45-51 (2013)
- **18.** Murthy B.R.N. and Lewlyn L.R. Rodrigues., Analysis and Optimization of Surface Roughness in GFRP Drilling Through Integration of Taguchi and Response Surface Methodology, *Res. J. Engineering Sci.*, **2**(5), 24-29 (**2013**)