International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study of the physical and mechanical properties in volume of TiAl by the MEAM method (B1, B2 and L10)

Author Affiliations

  • 1Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Research Group on Physical and Chemical Properties of Materials, Congo Brazzaville and Association Alpha Sciences Beta Technologies, Congo Brazzaville
  • 2Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Research Group on Physical and Chemical Properties of Materials, Congo Brazzaville and Association Alpha Sciences Beta Technologies, Congo Brazzaville
  • 3Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Geological and Mining Research Center, Congo Brazzaville

Res. J. Engineering Sci., Volume 12, Issue (3), Pages 6-14, September,26 (2023)

Abstract

In this work, we present the results of our study on the physical and mechanical properties in volume of the Ti-Al binary alloy system. This work consisted in determining the physical and mechanical properties of different crystallographic structures (L10, B1 and B2) of the Ti-Al alloy using the Modified Embedded Atom Method (MEAM) as well as the MEAM potentials of titanium, aluminum and Ti-Al interaction. We used the LAMMPS calculation code, based on classical molecular dynamics, to determine the most stable structure of TiAl which remains the L10 structure with crystal parameters a=4.02Å and c=4.10Å followed by the B2 structure with parameter a=3.23Å. We also found that the B2 structure has more possibility of transiting to other structures. We have shown that the mechanical behavior of some structures are preferable to others such as L10 and B1 resist compression best while B2 resists stretching, The results (some) obtained, during this study, were calculated by other methods (DFT) compared with the theoretical results and show a considerable agreement.q

References

  1. Kothari, K., Radhakrishnan, R., & Wereley, N. M. (2012). Advances in gamma titanium aluminides and their manufacturing techniques. Progress in Aerospace Sciences, 55, 1-16., undefined, undefined
  2. Froes, F. H., Kim, Y. W., & Hehmann, F. J. (1987). Rapid Solidification of Al, Mg and Ti. The Journal of The Minerals, Metals & Materials Society, 39, 14-21., undefined, undefined
  3. Antoine PARIS (2015). Study of the Phase Transformations in TiAl base alloys with low silicon alloys. Materials. Université De Lorraine. French. tel-01394655, undefined, undefined
  4. Amélio, S. (2005). Microstructural evolution of a TiAl alloy under dynamic compression and isothermal heat treatment. Doctoral dissertation, Institut National Polytechnique de Lorraine., undefined, undefined
  5. Nsongo, T., Ni, X., Chen, G., & Chan, K. M. (2001). Order-disorder Transformation for TiAl with L1~ 0 Structure at Stoichiometrical Composition. Rare Metals-Beijing-English Edition, 20(3), 147-151., undefined, undefined
  6. Mohamed Benhamida (2014). Structural, elastic and electronic properties of transition metal nitride alloys. Ph. D. Thesis. University of Setif 1-Stif., undefined, undefined
  7. Kim, Y. M., Lee, B. J., & Baskes, M. I. (2006). Modified embedded-atom method interatomic potentials for Ti and Zr. Physical Review B, 74(1), 014101., undefined, undefined
  8. Pascuet, M. I., & Fernández, J. R. (2015). Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy. Journal of Nuclear Materials, 467, 229-239., undefined, undefined
  9. Sarkar, S., Datta, S., Das, S., & Basu, D. (2009). Oxidation protection of gamma-titanium aluminide using glass–ceramic coatings. Surface and Coatings Technology, 203(13), 1797-1805., undefined, undefined
  10. Valencia, J. J., McCullough, C., Levi, C. G., & Mehrabian, R. (1987). Microstructure evolution during conventional and rapid solidification of a Ti-50at% Al alloy. Scripta metallurgica, 21(10), 1341-1346., undefined, undefined
  11. Denquin, A. (1994). Etude des transformations de phase et approche du comportment mécanique des alliages biphasés à base de TiAl: une contribution au développement de nouveaux alliages intermétalliques. Doctoral dissertation, Lille 1., undefined, undefined
  12. Hennig, R. G., Lenosky, T. J., Trinkle, D. R., Rudin, S. P., & Wilkins, J. W. (2008). Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases. Physical Review B, 78(5), 054121., undefined, undefined
  13. Kainuma, R., Ohnuma, I., Ishikawa, K., & Ishida, K. (2000). Stability of B2 ordered phase in the Ti-rich portion of Ti–Al–Cr and Ti–Al–Fe ternary systems. Intermetallics, 8(8), 869-875., undefined, undefined
  14. Banumathy, S., Ghosal, P., & Singh, A. K. (2005). On the structure of the Ti3Al phase in Ti–Al and Ti–Al–Nb alloys. Journal of alloys and compounds, 394(1-2), 181-185., undefined, undefined
  15. Tanaka, K. (1996). Single-crystal elastic constants of gamma-TiAl. Philosophical magazine letters, 73(2), 71-78., undefined, undefined
  16. Pearson, W. B. (2013). A handbook of lattice spacings and structures of metals and alloys: International series of monographs on metal physics and physical metallurgy. Vol. 4 (Vol. 4). Elsevier., undefined, undefined
  17. Nakamura, M., & Kimura, K. (1991). Elastic constants of TiAl 3 and ZrAl 3 single crystals. Journal of materials science, 26, 2208-2214., undefined, undefined
  18. Tanaka, K. (1996). Single-crystal elastic constants of gamma-TiAl. Philosophical magazine letters, 73(2), 71-78., undefined, undefined
  19. Connetable, D. (2019). Theoretical study of the insertion and diffusivity of hydrogen in the Ti3Al-D019 system: Comparison with Ti-hcp and TiAl-L10 systems. International Journal of Hydrogen Energy, 44(60), 32307-32322., undefined, undefined
  20. He, Y., Schwarz, R. B., Migliori, A., & Whang, S. H. (1995). Elastic constants of single crystal γ–TiAl. Journal of materials research, 10(5), 1187-1195., undefined, undefined
  21. Liu, Y. L., Liu, L. M., Wang, S. Q., & Ye, H. Q. (2007). First-principles study of shear deformation in TiAl and Ti3Al. Intermetallics, 15(3), 428-435., undefined, undefined
  22. Tanaka, K. (1996). Single-crystal elastic constants of gamma-TiAl. Philosophical magazine letters, 73(2), 71-78., undefined, undefined
  23. Hu, H., Wu, X., Wang, R., Jia, Z., Li, W., & Liu, Q. (2016). Structural stability, mechanical properties and stacking fault energies of TiAl3 alloyed with Zn, Cu, Ag: First-principles study. Journal of Alloys and Compounds, 666, 185-196., undefined, undefined
  24. Nakamura, M., & Kimura, K. (1991). Elastic constants of TiAl 3 and ZrAl 3 single crystals. Journal of materials science, 26, 2208-2214., undefined, undefined
  25. Ledbetter, H., & Migliori, A. (2006). A general elastic-anisotropy measure. Journal of applied physics, 100(6)., undefined, undefined
  26. Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal elastic anisotropy index. Physical review letters, 101(5), 055504., undefined, undefined
  27. He, Y., Schwarz, R. B., Darling, T., Hundley, M., Whang, S. H., & Wang, Z. M. (1997). Elastic constants and thermal expansion of single crystal γ-TiAl from 300 to 750 K. Materials Science and Engineering: A, 239, 157-163., undefined, undefined
  28. Tanaka, K. (1996). Single-crystal elastic constants of gamma-TiAl. Philosophical magazine letters, 73(2), 71-78., undefined, undefined