International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Experimental research on the mechanical characteristics of fiber-reinforced hybrid polymer composites

Author Affiliations

  • 1Department of Physics, National University of Bangladesh and Senior Researcher of Institute of Radiation and Polymer Technology, Bangladesh 1Atomic Energy Commission, P.O. Box-3787, Savar, Dhaka, Bangladesh
  • 2Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, P.O. Box-3787, Savar, Dhaka, Bangladesh

Res. J. Engineering Sci., Volume 12, Issue (2), Pages 8-21, May,26 (2023)

Abstract

Materials that are renewable, biodegradable, and natural are intended to replace synthetic ones in current research. Due to its unique attributes and environmental friendliness, natural fiber composites are a hot topic of research. Natural fibers are more accessible, manageable, and biodegradable than synthetic fibers, giving them an edge. Assessing changes in the mechanical characteristics of polypropylene reinforced with chopped pineapple leaf and abaca fiber is the aim of the current investigation. Additionally, the impact of the fiber's chemical processing, content, and ratio on its mechanical characteristics was examined. In Bangladesh, there are numerous sources of fiber, including abaca and pineapple leaves. Abaca fiber and pineapple leaf were both chemically processed with 5% sodium hydroxide (NaOH). In order to create uneven and discontinuous structures, hybrid polypropylene composites reinforced with pineapple leaf and abaca fiber were created via compression molding. It ranged from 3:1 to 1:1 to 1:3 in terms of the ratio of pineapple leaf fibers to abaca fibers. Percentages of 5, 10, 15, and 20% fiber loading were used. When reinforcing of polypropylene with 5 wt% pineapple leaf and abaca fiber was done in a 3:1 ratio, the best set of mechanical properties were obtained. However, fiber reinforced composites that had been treated with NaOH showed superior mechanical properties over untreated composites.

References

  1. Zaman, H.U. and Khan, R.A. (2022)., Influence of Fiber Surface Modifications on Fiber-Matrix Interaction in Plant and Waste Fiber Reinforced Thermoplastic Composites., Inter. J. Adv. Sci. Eng., 9 (2), 2686-2697.
  2. Zaman, H. U., & Khan, R. A. (2022)., Preparation and Evaluation of Polypropylene-Peanut Shell Flour Eco-Friendly Composites with and without Cloisite 30B., International journal of advanced Science and Engineering, 9(2), 2658-2668.
  3. Zaman, H.U. and Khan, R.A. (2022)., Surface Modified Calotropis Gigantea Fiber Reinforced Polypropylene Composites., Inter. J. Adv. Sci. Eng., 9(1), 2477-2487.
  4. Pickering, K.L., Efendy, M.A. and Le, T.M. (2016)., A review of recent developments in natural fibre composites and their mechanical performance., Compos. Part A: Appl. Sci. Manuf., 83, 98-112.
  5. Fidelis, M.E.A., Pereira, T.V.C., Gomes, O.d.F.M., de Andrade Silva, F. and Toledo Filho, R.D. (2013)., The effect of fiber morphology on the tensile strength of natural fibers., J. Mater. Res. Technol., 2 (2), 149-157.
  6. Zaman, H.U. and Khan, R.A. (2022)., Surface Modification of Plant-Drive Calotropis Gigantea Fiber Reinforced Polypropylene Composites., Prog. Appl. Sci. Technol., 12 (1), 23-35.
  7. Zaman, H.U. and Khan, R.A. (2022)., Surface Modified Benzoylated Okra (Abelmoschus esculentus) Bast Fiber Reinforced Polypropylene Composites., Adv. J. Sci. Eng., 3 (1), 7-17.
  8. Zaman, H. U., Khan, R. A., & Chowdhury, A. M. S. (2023)., The improvement of physicomechanical, flame retardant, and thermal properties of lignocellulosic material filled polymer composites., Journal of Thermoplastic Composite Materials, 36(3), 1034-1050.
  9. Zaman, H., & Khan, R. A. (2021)., Fabrication and study of natural plant fiber reinforced polymer composites., International Journal of Polymer Science & Engineering, 7(1), 11-22.
  10. Ramamoorthy, S. K., Skrifvars, M., & Persson, A. (2015)., A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers., Polymer reviews, 55(1), 107-162.
  11. Safinia, L., Datan, N., Höhse, M., Mantalaris, A., & Bismarck, A. (2005)., Towards a methodology for the effective surface modification of porous polymer scaffolds., Biomaterials, 26(36), 7537-7547.
  12. Zaman, H.U. and Khan, R.A. (2021)., A novel strategy for fabrication and performance evaluation of bamboo/e-glass fiber-reinforced polypropylene hybrid composites., Inter. J. Res., 8 (5), 201-211.
  13. Zaman, H.U. and Khan, R.A. (2021)., Effect of Surface Treatment on the Mechanical Features of Lady’s Finger Fibers Reinforced Polymer Composites., Inter. J. Res. Pub. Rev., 2582, 7421.
  14. Zaman, H.U. and Khan, R.A. (2020)., Biocomposites from Abaca Strands and Polypropylene: Effect of Chemical Treatment by Stearic Acid., Appl. Eng. Lett., J. Eng. Appl. Sci., 5, 126-134.
  15. Zaman, H.U., Khan, M.A., Khan, R.A., Noor-A-Alam, M. and Bhuiyan, Z. (2012)., Studies of the physico-mechanical, interfacial, and degradation properties of jute fabrics/melamine composites., Inter. J. Polym. Mater., 61 (10), 748-758.
  16. Mathangadeera, R.W., Hequet, E.F., Kelly, B., Dever, J.K. and Kelly, C.M. (2020)., Importance of cotton fiber elongation in fiber processing., Indust. Crop. Prod., 147, 112217.
  17. Ruan, P., Du, J., Raghavan, V., Lyew, D., Gariepy, Y. and Yang, H. (2020)., Microwave pretreated enzymatic retting of flax stems and comparison with the effect of radio frequency pretreatment., Indust. Crop. Prod., 151, 112312.
  18. Grégoire, M., Barthod-Malat, B., Labonne, L., Evon, P., De Luycker, E. and Ouagne, P. (2020)., Investigation of the potential of hemp fibre straws harvested using a combine machine for the production of technical load-bearing textiles., Indust. Crop. Prod., 145, 111988.
  19. Sun, Z. and Mingming, W. (2019)., Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites., Indust. Crop. Prod., 137, 89-97.
  20. Stokke, D.D. (2005)., low-cost biomass for the biocomposites industry., In Natural Fibers, Biopolymers, and Biocomposites, CRC Press, pp. 178-195.
  21. Konak, S., Kartal, A. and Kayahan, E. (2016)., Characterization, modification and use of biomass: okra fibers., Bioin. Biomim. Nanobiomate., 5(3), 85-95.
  22. Sain, M. and Panthapulakkal, S. (2006)., Bioprocess preparation of wheat straw fibers and their characterization. Indust., Crop. Prod., 23(1), 1-8.
  23. Bacci, L., Baronti, S., Predieri, S. and di Virgilio, N. (2009)., Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy., Indust. Crop. Prod., 29(2-3), 480-484.
  24. Reddy, N. and Yang, Y. (2005)., Properties and potential applications of natural cellulose fibers from cornhusks., Green Chem., 7(4), 190-195.
  25. Subagyo, A. and Chafidz, A. (2018)., Banana pseudo-stem fiber: Preparation, characteristics, and applications., Bana.Nutri.-Funct. Proces. Kinet., 1-19.
  26. Khan, G.A., Yilmaz, N.D. and Yilmaz, K. (2020)., Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers., The J. Text. Inst., 111(10), 1418-1435.
  27. Frank RR (2005)., Bast and other plant fibres, ‘‘Abaca”., Cambrige, England: Woodhead Publishing Limited; 2005.
  28. Knothe J, Rebstock K, Schloesser T. (2000)., Natural fibre reinforced plastics in automotive exteriour applications., In: 3rd International wood and natural fibre composites symposium. Kassel, Germany; p. B 1–12.
  29. Bledzki, A., Mamun, A., Lucka-Gabor, M. and Gutowski, V. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Exp. Polym. Lett., 2 (6), 413-422., undefined, undefined
  30. Bledzki, A. and Gassan, J. (1999)., Composites reinforced with cellulose based fibres., Prog. Polym. Sci., 24(2), 221-274.
  31. Lee, S. M., & Rowell, R. M. (1991)., Natural composites fibre modifications., Int. Encyclopaedia Compos, 4.
  32. Zafeiropoulos, N., Williams, D., Baillie, C. and Matthews, F. (2002)., Development and investigation of surface treatments., Compos. Part A, 33, 1083-1093.
  33. Sreekala, M. and Thomas, S. (2003)., Effect of fibre surface modification on water-sorption characteristics of oil palm fibres., Compos. Sci. Technol., 63(6), 861-869.
  34. Paul, A., Joseph, K. and Thomas, S. (1997)., Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers., Compos. Sci. Technol., 57(1), 67-79.
  35. Jacob John, M., Francis, B., Varughese, K. and Thomas, S. (2008)., Effect of chemical modification on properties of hybrid fibre biocomposites., Compos. Part A: Appl. Sci. Manuf., 39, 352-363.
  36. Li, X., Tabil, L.G. and Panigrahi, S. (2007)., Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review., J. Polym. Environ., 15(1), 25-33.
  37. Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. et al. (2015)., A review on pineapple leaves fibre and its composites., Inter. J. Polym. Sci..
  38. Van de Weyenberg, I., Truong, T.C., Vangrimde, B. and Verpoest, I. (2006)., Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment., Compos. Part A: Appl. Sci. Manuf., 37(9), 1368-1376.
  39. Haque, M.M. and Hasan, M. (2016)., Mechanical properties of betel nut and glass fibre reinforced hybrid polyethylene composites., Inter. J. Autom. Mecha. Eng., 13 (3).
  40. ASTM Standard D 638-01 (2002)., Annual book of ASTM standard., West Conshohocken, PA: ASTM; 2002.
  41. ASTM Standard D 790-00 (2002)., Annual Book of ASTM standard., West Conshohocken, PA: ASTM; 2002.
  42. Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J. and Hwang, T.-S. (2006)., Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites., Compos. Struct., 72(4), 429-437.
  43. Joseph, S., Sreekala, M., Oommen, Z., Koshy, P. and Thomas, S. (2002)., A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres., Compos. Sci. Technol., 62(14), 1857-1868.
  44. Rana, A., Mandal, A., Mitra, B., Jacobson, R., Rowell, R. and Banerjee, A. (1998)., Short jute fiber reinforced polypropylene composites: Effect of compatibilizer., J. Appl. Polym. Sci., 69 (2), 329-338.
  45. Rahman, M.R., Huque, M.M., Islam, M.N. and Hasan, M. (2009)., Mechanical properties of polypropylene composites reinforced with chemically treated abaca., Compos. Part A: Appl. Sci. Manuf., 40 (4), 511-517.
  46. Laurencin CT and Nair LS (2014)., Nanotechnology and regenerative engineering: the scaffold., Boca Raton, FL: CRC Press.
  47. Doan TTL (2005)., Investigation on jute fibers and their composites based on polypropylene and epoxy matrices., MSc Dissertation, Dresden: Dresden University of Technology; 2005.
  48. Valadez-Gonzalez, A., Cervantes-Uc, J., Olayo, R. and Herrera-Franco, P. (1999)., Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites., Compos. Part B: Eng., 30(3), 309-320.
  49. Rokbi, M., Osmani, H., Imad, A. and Benseddiq, N. (2011)., Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite., Proced. Eng., 10, 2092-2097.
  50. Shahinur, S., Hasan, M. and Ahsan, Q. (2017)., Physical and mechanical properties of chemically treated jute fiber reinforced MAgPP green composites., Appl. Mecha. Mater., 860, 134-139.
  51. Ahmed, S., Ahsan, A. and Hasan, M. (2017)., Physico-mechanical properties of coir and jute fibre reinforced hybrid polyethylene composites., Inter. J. Autom. Mecha. Eng., 14(1).
  52. Premalal, H.G., Ismail, H. and Baharin, A. (2002)., Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites., Polym. Test., 21(7), 833-839.