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Abstract  

Taking into account relativistic aspect in quantum calculations, is a fundamental step towards correct modeling of systems 

involving heavy elements. This modeling involves an appropriate resolution of Schrödinger equation. The present study 

focuses on Xenon which is a heavy poly electronic atom. This is to calculate on basis of DFT, its radial wave functions for 

different orbitals, total energies and its effective potential in the ground state. Our motivation through this simulation is to 

examine the influence of relativistic effects and spin-orbit coupling on these physical grandeur. So, due to the structural 

complexity of the equation, we carried out the calculations implicitly by the finite element method via a program established 

from MATLAB software in deterministic mode. The numerical solutions obtained are based on the approximation of the local 

density (LDA) and that of the generalized gradient (GGA). The results obtained, allowed to describe xenon on a microscopic 

scale, to understand its structure and to explore the mechanisms that ensure its stability. Finally, our results are in good 

agreement with theoretical data found in the literature. 

 

Keywords: Xenon, relativistic Hamiltonian, spin-orbit coupling, numerical algorithm, Schrodinger equation, MATLAB 

code. 

 

Introduction 

Describing behavior of electrons, atoms or molecules, was one 

of the main challenges for physicists at the start of the twentieth 

century
1
. According to the latter, it is a question of being able to 

calculate and predict the physical and chemical properties of 

these particles. Rama
2 

revealed that the laws of classical 

mechanics are incompetent to achieve such goals. It is then up 

to these physicists according to Kohn
3
, to appeal to the 

fundamental laws of quantum mechanics which govern these 

particles in order to characterize these properties faithfully. 

Adel
4 

adds that the physical properties of a material, illustrated 

by the image of light electrons moving around heavy nuclei, 

depend on the behavior of its electronic structure; quantum 

mechanics provides the ideal framework for this. According to 

Nadir, Szabo and Ostlund
5,6

 a good knowledge of electronic 

structures is an important factor for understanding the physical 

properties of materials. Bahnes
7 

states that a good knowledge of 

these properties is essential for the manufacture of electronic 

devices and the discovery of new materials with very interesting 

properties. This is why, since the 1970s, the urgent search for 

materials with optimal optoelectronic properties have attracted 

the attention of the scientific community because of their many 

possible applications
8
. Diouf

9 
studied the electronic properties of 

helium, carbon and iron atoms; Lamrani
10 

investigated the 

magnetic and electronic structural properties of dilute magnetic 

oxides; Maylis
11 

inspected the electronic and magnetic 

properties of iron complexes. In quantum physics, most of the 

work in the literature is based on the calculation of the 

electronic structure
12

. What makes say Susi et al.
13

 that the 

calculations of electronic structures have become a cornerstone 

of modern research in chemistry and in the physics of materials, 

allowing the in silico modeling of chemical reactions and the 

design of the first principles of new catalysts. These calculations 

sometimes amount to solving a problem with a large number of 

electrons and nuclei which are in interactions. Which makes the 

direct resolution of Schrödinger's equation tedious or even 

impossible
14

. However, this resolution occupies a great center of 

interest in scientific research today
15,16

. The first "quantum" 

methods developed in this direction are, among others, those of 

Hartree and Hartree-Fock, which lead to the energy of the 

system being expressed as a functional of its wave function
4
. 

Using certain approximations, it amounts to transforming the 

famous Schrödinger equation into a system of numerically 

solvable equations
17

. However, these methods suffer from two 

drawbacks: i. they require enormous computation for a multi-

electronic system and ii. they omit electronic correlation, which 

is the main characteristic of the quantum behavior of electrons
18

. 

To do this, it is necessary to use a methodology allowing the 

calculation of the electronic structure in principle, in a realistic 

way
19

. Many methods of calculating electronic structures were 

used before the advent of DFT. They are divided into two main 

categories: i. semi-empirical methods using experimental 

parameters and ii. ab initio methods, based on solving 

mathematical equations without adjusting parameters
20

. Thus, 

the advent of the "DFT" density functional theory has made it 
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possible to solve or circumvent problems. This theory, it should 

be remembered, is based on the two theorems of Hohenberg and 

Kohn-Sham, where Schrödinger equation is replaced by another 

equivalent
21

. The main goal of density functional theory is to 

replace the multielectronic wave function with electron density 

as the base quantity for calculations
22

. The principle consists of 

a reformulation of the N-body quantum problem into a unibody 

problem (or, strictly speaking, hatchback if we consider spin 

problems) with the electron density as only parameter
23

. The 

central idea is that the sole electron density of the ground state 

of the system entirely determines the mean values of 

observables, such as energy
24

. Originally, DFT was mainly 

developed within the framework of non-relativistic quantum 

theory (time-independent Schrödinger equation) and the Born-

Oppenheimer approximation
25

. Subsequently this theory was 

extended to the field of time-dependent quantum mechanics 

(one speaks then of TDDFT for Time-Dependent Density 

Functional Theory) and to the relativistic field
26,27

. According to 

Mouhamed
28

 the relativistic effects must be taken into account 

for a correct modeling of systems involving heavy elements. 

While spin-independent effects can easily be included in most 

quantum physics calculation codes, including spin-orbit (SO) 

coupling in the simulations is not trivial. One of the 

fundamental objectives is to describe matter on a microscopic 

scale in order to understand its structure and explore the 

mechanisms that ensure its stability
28

.  

 

However, the situation becomes more complicated when we are 

interested in the properties of chemical species having one or 

more heavy atoms, because the relativistic effects on the 

electronic structure become not insignificant
29,30

. These effects 

can be divided into two categories: the relativistic effects 

independent of the electron's spin, and those dependent on the 

spin, essentially the spin-orbit (SO) coupling
31

. Thus the 

treatment of all of these relativistic effects in quantum physics 

calculations induces the use of a relativistic Hamiltonian which, 

by nature, explicitly reveals the electronic spin (in opposition to 

the non-relativistic Hamiltonian called "spin -free")
31

.  

 

It is in this same vein that this study was initiated. It is a 

question of calculating on the basis of the DFT, the electronic 

structure of Xenon which is a heavy atom and therefore, the 

relativistic variation of the mass of the electrons according to 

the speed is not negligible any more. It then becomes relevant to 

take into account the corrective terms of relativistic origin in our 

calculations. Today, the increase in computing power and the 

development of increasingly efficient algorithms have 

contributed to the evolution of techniques for modeling 

materials at the atomic scale within periods that remain 

reasonable
14

. In the present study, the MATLAB code was used 

in deterministic mode to make our calculations. The results 

obtained, provided a better understanding of the organization of 

matter at the atomic scale for the case of xenon. The results are 

finally deemed satisfactory by comparison with experience and 

the literature. 

 

Methodology 

Problem definition: At the beginning of the twentieth century, 

physicists discovered that the laws of classical mechanics are 

incapable of describing the behavior of electrons, atoms or 

molecules
2
. Quantum mechanics provides the ideal framework 

for calculating and predicting the physical and chemical 

properties of systems with several particles (atoms or 

molecules)
32

. The first “quantum” methods developed in this 

context, are among others, those of Hartree and Hartree-Fock 

based on the model of independent particles
11

. These methods 

and those derived from this formalism are based on a multi-

electronic wave function. The most common quantum physics 

methods are based on three approximations: i. the Born-

Oppenheimer approximation which assumes that electrons adapt 

instantly to the motions of nuclei; ii. the approximation 

concerning the size of the nucleus: that is modeled by a point, 

this approximation has no influence as long as we are interested 

in valence electrons; iii. the approximation relating to the speed 

of the electrons: this is supposed to be sufficiently low to allow 

a non-relativistic description of the electrons. This hypothesis is 

only valid for electrons which have low kinetic energy
30

. Using 

these approximations, the famous Schrödinger equation is 

transformed into a system of numerically solvable equations. 

However, the methods of Hartree, Hartree-Fock and those 

derived, suffer from two drawbacks: one relating to the amount 

of computation for a multi-electronic system and the other to the 

omission of the electronic correlation which is the main 

characteristic of the quantum behavior of electrons
33

. The 

advent of the DFT density functional theory circumvented these 

problems. This theory is based on the two theorems of 

Hohenberg and Kohn where the Schrödinger equation is 

replaced by another equivalent
19

. The idea is to replace the 

multi-electronic wave function with electron density as the base 

quantity for the calculations. In other words, it consists of a 

reformulation of the N-body quantum problem into a unibody 

problem (or, strictly speaking, hatchback if we consider spin 

problems) with the electron density as the only parameter
14

. 

Thus, according to these two theorems, we can fully know the 

state of an electronic system by determining its electron density 

and we can also obtain the electron density of the ground state 

by minimizing the energy of the system
6
. The fundamental 

objective is to describe matter on a microscopic scale in order to 

understand its structure and explore the mechanisms that ensure 

its stability. However, the situation is complicated when we are 

interested in the properties of species with one or more heavy 

atoms
28

. For such atoms, the relativistic variation of the mass of 

an electron as a function of its speed is no longer negligible. 

This is because relativistic effects on physical properties such as 

energy are proportional to the nuclear charge of the atom 

concerned
34

. These effects can be divided into two categories: 

the relativistic effects independent of the electron's spin 

(scalars), and those dependent on the spin, essentially the spin-

orbit (SO) coupling
35

. The origin of scalar effects is linked to 

the fact that electrons close to a heavy nucleus can reach speeds 

close to that of light, producing an effect of increasing mass
28

. 
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The effects of spin-orbit coupling when they result from the 

interaction of the intrinsic magnetic moment of the electron, due 

to the spin, with the magnetic induction created by the orbital 

motion. The effect of SO coupling is manifested in several 

phenomena in chemistry and is notably responsible for the 

emergence of the ne atom structure, and it is all the more 

important when the nuclei are heavy. These effects of SO 

coupling can also influence the structure and stability of 

molecules
27

. The treatment of all relativistic effects (scalars and 

SO) in chemistry or quantum physics calculations induces the 

use of a relativistic Hamiltonian which, by nature, explicitly 

reveals the electron spin (in opposition to the non-Hamiltonian -

relativist known as "spin-free")
36

. However, it can be noted that 

the only processing of scalar effects can be performed using 

scalar pseudopoentials, which is commonly implemented in 

most quantum computation programs. The inclusion of SO 

coupling requires relativistic treatment, which results in the use 

of a Hamiltonian involving matrices. The resulting wave 

function therefore involves spinors with four or two components 

(relativistic equivalent of the molecular orbital) with complex 

values. In addition, the dependence of the relativistic 

Hamiltonian on the spin of the electron is not without 

consequence because the degrees of freedom of the spin and of 

space are couples (via the spin-orbit operator). The result is a 

"mixture" of the components and the electronic spin. Ultimately, 

it is accepted that for a correct modeling of systems involving 

heavy elements, it is necessary to take into account the 

relativistic effects
31

. 

 

Xenon structure: Xenon is the chemical element with atomic 

number 54, symbol Xe. It is a noble, odorless and colorless gas. 

In a discharge lamp, it emits a blue light
37

. It has the 

particularity of being the rarest (and therefore the most 

expensive) gas behind argon, the latter having only radioactive 

isotopes
38

. Xenon is an atom whose nucleus has 54 protons and 

54 electrons which constitute its electron cloud. In nature, we 

can find 7 stable (or almost stable) isotopes of xenon
39

. Its 

valence layer being completely full, it is inert with respect to 

most chemical reactions. Historically, xenon was discovered in 

1898 by William Ramsay and Morris William Travers by 

spectral analysis of "residues" in air from which oxygen and 

nitrogen had been removed. It was Ramsay who proposed to 

baptize this new gas xenon, derived from the Greek word 

(xenos), translating as "foreigner" or "guest" because the xenon 

was discovered in the form of "unknown gas"
40

. The melting 

point corresponds to a moment of pressure and temperature at 

which the chemical element melts, thus passing from the solid 

state to the liquid state. The boiling point corresponds to a 

moment of pressure and temperature at which the chemical 

element boils, thus passing from the liquid state to the gas 

state
41

. In the gaseous state, its density 5.761kg.m
-3

; in the liquid 

state it is 3.100g.cm
-3

 and in the solid state it is 3.640 (g.cm
-3

)
42

. 

The order of filling of the electronic sub shells of electrically 

neutral atoms in the ground state arranged by increasing atomic 

number is, according to the Klechkowski model:  

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s →4d → 5p 

→ 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p 

 

The s, p, d, f sub layers can respectively contain a maximum of: 

2, 6, 10 and 14 electrons. According to the Bohr model, the 

electrons are distributed in this order on layers called: K, L, M, 

N, O… which can only contain a limited number of electrons. 

Thus the K shell can contain a maximum of 2 electrons, the L 

shell, 8 electrons, the M shell, 18 electrons, the N shell, and 32 

electrons…
43

. The electronic configuration of the xenon atom 

(54Xe) according to the Klechkowski and Bohr rules is shown 

in Table-1 and shown schematically in Figure-1. 

 

Mathematical formulation: Extending DFT to the relativistic 

domain involves several difficulties regarding approximations 

of exchange and correlation energy
44

. The bases of relativistic 

DFT were developed in the 1970s by Rajagopal
45,46 

, Von Barth 

and Hedin
47

 and Macdonald and Vosko
48

. No relativistic 

methods, based on Schrödinger's Hamiltonian, rely on the 

approximation assuming that electrons have a sufficiently low 

velocity to be written in a no relativistic framework. This 

approximation has been found to be suitable for describing 

systems containing light atoms (Z<36), for which electrons have 

low kinetic energy
25

. However, the relativistic effects on the 

physical properties become not insignificant and potentially 

comparable to the electronic correlation for heavier atoms, so it 

is necessary to take them into account. Relativistic effects have 

their origin mainly in the fact that internal electrons are 

animated at a speed that can approach the speed of light and the 

electrons start to behave relativistically
28

. The treatment of all of 

these relativistic effects in quantum physics calculations induces 

the use of a relativistic Hamiltonian which, by nature, explicitly 

reveals the electronic spin (in opposition to the non-relativity 

Hamiltonian called "spin- free") translated by relation (1)
49

. 
 

0 MV D SO                         (1) 

 

The non relativistic Hamiltonian given by equation (2) 

 

   0      
2

i
i i i

i j

jU r V r



    

 

              (2) 

 

The operators of the retained relativistic perturbation are given 

by equation (3) 

 

4

2

1

4
MV i

i

p
c

   
   

              (3) 

 

The mass-speed correction term is given by equation (4) 

 

  2

2

1
( )

4

N

D i i

i

V r
c

                               (4) 
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Table-1: Distribution of electrons according to Klechkowski and Bohr models. 
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Figure-1: Disposition of electrons around the nucleus. 

 

The term of the spin-orbit contribution is described by the 

expression (5) 

 

 2

1
.

4
S O i i i

i

V p
c

                          (5) 

 

Taking into account the time-independent Schrödinger equation, 

the relativistic Pauli equation obtained in order can be written 

according to the relation (6) 
 

   0 MV D SO r E r                        (6) 

 

Taking into account the previous equations, equation (8) then 

becomes equation (7) 

     

 
   

4 2

2 2

2

1 1
( )

4 4

.
4

   
2

1

N

j i i i

i i

i i i

i

i
i i i

i j

p V r
c c

U r

r E

c

V r

r

V p



 
    

    
 

  


 




  




 (7) 

 

Taking into account the conditions of normalization and 

orthogonality of wave functions, we define the total energy of a 

multielectronic atom with relativistic corrections and spin-orbit 

coupling, by relation (8) 

       

     

4

2

2

2 2

1

4

1 1
( ) .

   

4

2

4

j i

i

N

i i i i

i
i i i

i j

i

i i

E r r p
c

V r V

U

p
c

r

r

r

c

V






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


    






 


 

  (8)  
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By taking into account the properties of the operators and the 

orthonormalization conditions of wave functions in the 

development of the calculations, we end up with an expression 

of the energy given by equation (9) 

   

4

2

1 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2

1 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

4

 
2

i i i i i i j j i i j j

i j

i i j j i i j j

i
i

i i i i i

ij

i

i

E r r r r r r r
r r

r r r r r p r
cr r

U r     
  

     


             

           




  







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 







 

 

   2

2 2

1 1
( , ) ( ) . ( , ) (9)

4 4

N

i i i i i i i i i

i i

r V r V p r
c c

 


         

 
 

By considering the stationary energy and the orthonormalization 

conditions satisfied, the Hartree-Fock variational principle 

translating the energy minimization condition can be written 

using Lagrange multipliers, according to equation (10)
50 

 

 ( , ) ( , ) ( , ) 0E r r r   
 

                 (10) 

 

Où, ( , )r  est donnée par la relation (11)  

 

   1( , ) ( ) ,
sn m m zr r P r Y s    

 
          (11) 

 

When the normalization and orthogonality assumptions of the 

radial wave functions are satisfied, it is possible to write (13) in 

the form of equation (12)
51  

 

 , ' '

, '

( ) ( ) ( ) d r 0n n n n n

n n

E P r P r P r          (12) 

 

Thus this minimization of the total energy, combined with the 

respect of the conditions introducing the Lagrange multipliers, 

lead to the relativistic equation satisfied by the radial part of the 

wave function with one electron and given by the relation (13)
52  
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2
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4

1
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n
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d d
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Vd dd
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


 



    



    
      



  
    

 

    

 



    (13) 

 

Where 
n represent the eigenvalues of the problem, that is, 

the energies of the orbitals. In practice, DFT methods use the 

Kohn-Sham approach
53

. This approach considers that the 

electrons must be immersed in an effective external potential. It 

thus made it possible to explicitly separate the kinetic term and 

the Hartree term from the exchange-correlation term. It follows 

that the potential  V r contained in the radial relativistic 

equation (15) can be approximated by the effective potential 

( )effV r Therefore, the Kohn-Sham equation with relativistic 

corrections and spin orbit coupling is written according to 

equation (14)
54

.
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

  
(14) 

 

It is a question of finding the solutions of this equation, the 

analytical resolution of which is difficult, if not impossible. It is 

then up to the use of digital methods calling on adequate 

computer resources. 

 

Numerical procedure: In order to be able to approach the 

numerical resolution of the equations of Kohn and Sham, we 

rewrite the equation (16) in the form of a differential equation 

translated by the relation (15) 
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2 2

2 1
( ) ( )

4

1
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1
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f effd dd
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    
     
    

 
        

(15) 

 

Where we set W (r) as a potential defined by relation (16)  

 

   
0 0

2
2

( )
4

neff effW r V r V r


                 (16) 

 

n  is a bound state called orbital energy. In order for these 

energies Ԑnl to describe a correct energy spectrum, we impose 

boundary conditions on the potential
55

. 

 

For the resolution, we used the finite difference method to find 

the numerical solutions of equation (15). In reality, the 

calculation took place iteratively using a self-consistent cycle 

according to 6 steps: i. choice of input potential 
inputW  ii. 

calculation of the effective Kohn-Sham potential ( )effV r
 
iii. 

solving the relativistic Kohn-Sham equation, iv. calculation of 

the output potential ( )W r v. verification of the convergence 

criterion of the solutions (by comparing the input potential 
inputW  and the output one, ( )W r ). If the criterion is not yet 

satisfied, we start the cycle again. The most widely used 

convergence criteria are based on the difference between the 

energies corresponding to the     and (   )    iteration as 

shown by equation (17) 

 

1                       (17) 

 

 , being the tolerance value (details) that we choose from the 

start. vi. calculation of the various physical quantities involved; 

End of process. 

 

All of these steps are shown schematically by the algorithm 

shown in Figure-2. 
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Due to the structural complexity of the system, the basic 

equations were implicitly linearized and solved numerically by 

the finite element method using Matlab software. MALAB 

(MATrix LABoratory) is programming software that makes it as 

easy as possible to transcribe a mathematical problem into 

computer language, using writing as close as possible to 

scientific natural language. A sequential resolution of the 

problem with the help of this computer program made it 

possible to quickly obtain interesting results which were 

difficult, if not impossible, to obtain with other approaches such 

as the analytical one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2: Iterative process used in solving the relativistic Kohn-Sham equation. 
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Results and discussion 

The results that we will present here are obtained with 

calculations based on the local density approximation (LDA) 

and the generalized gradient approximation (GGA). Only the 

terms of the Vosko-Wilk-Nusser exchange-correlation potential 

(VWN) and the correlation exchange potential of Perdew, Burke 

and Ernzerhof (PBE) are considered for the LDA and GGA 

respectively. We will limit ourselves here to the results relating 

to the distribution of the radial wave function for s, p and d 

orbitals, to the effective potential and to the total energies of the 

xenon atom in the ground state. 

 

Radial wave function: For s orbitals: In Figures-3a, 3b, 3c, 3d 

and 3e, we can see the variations in the radial wave function of 

the 1s, 2s, 3s, 4s, and 5s orbitals, respectively. The analysis of 

Fig. 3a shows that the radial wave function tends towards zero 

in the vicinity of the nucleus and out of its field of action, for 

rays tending to infinity. The function admits a maximum in the 

neighborhood of r=0.01 u.a; which corresponds to the most 

probable position to find an electron from shell 1s. In the 

immediate vicinity and far from the nucleus, the probability of 

finding an electron is very low or even almost zero. Far from the 

nucleus, the interaction potential tends to zero, while near the 

nucleus the force of repulsion is so great that the electron cannot 

cross a limit barrier. This variation of the radial wave function 

of the 1s orbital of the xenon ground state respects the finitude 

conditions of atomic wave functions. The two methods used 

look the same. Unlike the 1s orbital given by Figure-3a, the 2s, 

3s, 4s, and 5s orbitals, (represented respectively by figures 3b, 

3c, 3d and 3e), form a wave structure which gives probable 

positions to find, in these areas the sign of the wave function 

will be either positive or negative but the probability remains 

positive. We also notice that the greater the quantum number n, 

the more nodes we have; let (n-l-1) nodes. For the 2s orbital, the 

maximum is in the vicinity of r = 0.02 u.a; for the 3s orbital, we 

have two maximums: at r = 0.01 u.a and r = 0.25 u.a; for the 4s 

orbital, we note two maximums: at r = 0.01u.a and r = 0.3 u.a 

and the 5s orbital which has three maximums: at r = 0.01u.a and 

r=1.5 u.a. All these variations tend towards zero for large values 

of r. for the two methods chosen, the curves present practically 

the same appearance except for the variation of the 5s orbital 

where the curve of the so-called Perdew-Burke-Ernzerhof 

method deviates slightly from that of the LDA-VWN. The 5s 

orbital being a valence layer, the correlation exchange 

phenomena are more accentuated. 

 

For p orbitals: Figures-4a, 4b, 4c and 4d illustrate the 

distribution of the radial wave functions of the 2p, 3p, 4p, and 

5p orbitals, respectively. So apart from the 2p orbital, (Figure-

4a), the other 3p, 4p, and 5p orbitals (Figures-4b, 4c and 4d), all 

have nodes with a total number of nl- 1. There is a succession of 

maximum and minimum of the radial wave functions, which 

corresponds to the most probable values of the regions to locate 

the electrons. All the curves tend towards zero for the large r, 

that is to say outside the range of the nucleus. For the two 

methods chosen, the curves present practically the same shape 

except for the variation of the 5p orbital where the curve of the 

so-called Perdew-Burke-Ernzerhof method deviates slightly 

from that of the LDA-VWN. Like the 5s orbital, the 5p orbital is 

also a valence layer, so the exchange-correlation phenomena are 

also more pronounced there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3a: Variation of radial wave function of 1s orbital of xenon atom in its ground state. 
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Figure-3b: Variation of radial wave function of 2s orbital of xenon atom in its ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3c: Variation of radial wave function of 3s orbital of xenon atom in its ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3d: Variation of radial wave function of 4s orbital of xenon atom in its ground state. 
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Figure-3e: Variation of radial wave function of 5s orbital of xenon atom in its ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-4a: Variation of radial wave function of 2p orbital of xenon atom in its ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-4b: Variation of radial wave function of 3p orbital of xenon atom in its ground state. 
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Figure-4c: Variation of radial wave function of 4p orbital of xenon atom in its ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-4d: Variation of radial wave function of 5p orbital of xenon atom in its ground state. 

 

For d orbitals: Figure-5a and 5b show the evolution of the 

radial wave function of 3d and 4d orbitals respectively. The 

analysis shows that the radial wave function of the 3d orbital 

(Figure-5a), tends towards zero in the vicinity of the nucleus 

and out of its field of action for the rays tending towards the 

nucleus. infinite. This function admits a maximum in the 

neighborhood of r=0, 21u.a, which corresponds to the most 

probable position to find an electron from the 3d shell. For the 

4d orbital (Figure-5b), the variation has a knot. The probability 

of presence is maximum in the neighborhood of r = 0.2u.a and r 

= 0.7u.a, it tends towards zero when r increases. 

 

Effective potential: Figure-6 shows the variation of the 

effective potential of the xenon atom in its ground state obtained 

in each approach. Note that the two curves representing the 

variation of the potential tend towards zero when the gap 

between the nucleus and the electrons is large. This is explained 

by the weak influence of the nucleus on the electrons if the latter 

move away. The two potential curves obtained by the local 

Vosko-Wilk-Nusser method approach and that obtained by the 

generalized gradient approach, Perdew-Becke-Ernzerh of 

method present practically the same shape. 

 

Total energies: We present in Table-2, the total energies of the 

xenon atom obtained numerically in the context of our study. 

Our results are then compared with the theoretical results of 

Bunge, C. F. and Barrientos, J. A.
56

 for the same atom. In this 

table, the relative deviations are also shown. By analyzing the 

data in the Table above, we notice that the results obtained in 

the Vosko-Wilk-Nusser local density approach have a small 

difference (3.5% for the total energy) between the numerical 

data obtained in the framework of our work and the data 

extracted from the work of Bunge, C. F. and Barrientos, J. A.
56

.  

 

In contrast, the disagreement between the total energy in the 

Perdew-Burke-Ernzerhof generalized gradient method and the 

total energy determined by Bunge, C. F. and Barrientos, J. A.
56

 

is around 6.1%. 
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Fig.5a. Variation of the radial wave function of the 3d orbital of the xenon ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-5b: Variation of radial wave function of 4d orbital of xenon atom in its ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6: Variation of effective potential of xenon atom in its ground state. 
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Table-2. Comparison of total energies in the so-called: LDA-VWN, GGA-PBE et RHF. 

 
Results of Bunge C. F. and 

Barrientos, J. A.
56  

(RHF) 
LDA-VWN 

1 (%) 
VWNLDA -RHF GGA-PBE 

2 (%)
PBEGGA -RHF 

( . )totE u a  -7232,13849 -7485,5 3,5032 -7677 6,1511 

 

Conclusion 

One of the great attractions of DFT methods is the resolution of 

the Schrödinger equation including corrective terms of 

relativistic origin. In this work, we were interested in xenon, a 

heavy atom that has 54 electrons. The structural complexity of 

the equation required the development of a MATLAB code used 

in deterministic mode to do our calculations. These calculations 

focused on physical quantities such as the radial wave functions, 

the total energies and the effective potential in the ground state 

based on the approximation of the local density (LDA) and that 

of the generalized gradient (GGA). At the end of the study, the 

results obtained are consistent and meaningful. For the 1s 

orbital, the radial wave function tends to zero in the vicinity of 

the nucleus and out of its field of action, for rays tending to 

infinity. It admits a maximum in the neighborhood of r=0.01 

u.a; corresponding to the most probable position to find an 

electron from shell 1s. In the immediate vicinity and far from 

the nucleus, this probability is very low or even almost zero. Far 

from the nucleus, the interaction potential tends to zero, while 

near the nucleus the force of repulsion is so great that the 

electron cannot cross a limit barrier. For the 2s, 3s, 4s, and 5s 

orbitals, we note a wave structure giving positions likely to be 

found, in these areas the sign of the wave function will be either 

positive or negative but the probability remains positive. We 

also notice that the greater the quantum number n, the more 

nodes we have; let (n-l-1) nodes. For the 2s orbital, the 

maximum is in the neighborhood of r=0.02 u.a; for the 3s 

orbital, we have two maximums: at r=0.01 u.a and r=0.25 u.a; 

for the 4s orbital, which also has two maximums, we have r = 

0.01u.a and r=0.3 u.a and finally for the 5s orbital, we note three 

maximums: at r=0.01u.a and r=1.5 u.a. All these variations tend 

towards zero for large values of r. For the two methods chosen, 

the curves present practically the same appearance except for 

the variation of the 5s orbital where the curve of the so-called 

Perdew-Burke-Ernzerhof method deviates slightly from that of 

the LDA-VWN. The 5s orbital being a valence layer, the 

correlation exchange phenomena are more accentuated. Apart 

from the 2p orbital, the other 3p, 4p, and 5p orbitals all have 

nodes totaling n-1-1. There is a succession of maximum and 

minimum radial wave functions, corresponding to the most 

probable values of the regions to locate the electrons. All the 

curves tend towards zero for large r, that is, outside the range of 

the nucleus. For the two methods chosen, the curves present 

practically the same appearance except for the variation of the 

5p orbital where the curve of the so-called Perdew-Burke-

Ernzerhof method deviates slightly from that of the LDA-VWN. 

Like the 5s orbital, the 5p orbital is also a valence layer, so the 

exchange-correlation phenomena are also more pronounced 

there. For the 3d orbital, the radial wave function tends to zero 

in the vicinity of the nucleus and out of its field of action for 

rays tending to infinity. This function admits a maximum in the 

neighborhood of r= 0.21u.a, which corresponds to the most 

likely position of finding an electron from the 3d shell. For the 

4d orbital, the variation has a knot. The probability of presence 

is maximum in the neighborhood of r = 0.2u.a and r = 0.7 u.a, it 

tends towards zero when r increases. For the effective potential, 

the variation tends to zero when the gap between the nucleus 

and the electrons is large. This is explained by the weak 

influence of the nucleus on the electrons if the latter move away. 

The two potential curves obtained by the local Vosko-Wilk-

Nusser method approach and that obtained by the generalized 

gradient approach, Perdew-Becke-Ernzerhof method present 

practically the same shape. Finally for the total energies, the 

relative differences between our results and those of 56 show 

that the results obtained in the Vosko-Wilk-Nusser local density 

approach have a small difference (3.5% for the total energy). By 

cons, the disagreement between the total energy in the Perdew-

Burke-Ernzerhof generalized gradient method and the total 

energy determined by 56 is around 6.1%. In short, the results 

obtained made it possible to better understand the organization 

of matter at the atomic scale for the case of xenon. Finally, they 

are considered satisfactory by comparison with experience and 

the literature. This study concerns the xenon atom only in the 

fundamental state; thus to give this study its full relevance, it is 

imperative to extend the study to excited states. 
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