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Abstract  

We present here the models describing perfect fluid collapse which generalize the homogeneous dust collapse solution by 

including non-zero pressures and inhomogeneities. It is shown that a black hole or any lighter bodies like white dwarf or 

neutron star will be generated as end product of gravitational collapse, rather than a body having naked singularity. It is 

also shown that non-spacelike trajectories can’t escape from the central singularity, formed in this process. 
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Introduction 

In recent years, dynamics of black hole has witnessed many 

theoretical as well as practical developments. Although, few 

exact static or stationary models of black holes are well  

studied
1-5

. But, the actual formation of black hole or any lighter 

bodies like white dwarf or neutron star within the framework of 

a dynamical gravitational collapse is an arena where our 

knowledge is limited and hence it provides a good scope to 

discuss the same. 

 

Black hole or any lighter bodies born when a massive star 

exhausts its nuclear fuel and then the process of collapse 

underwent and continues under the influence of its own 

gravitational fields as far as the actual physical scenario is 

concerned. For showing spherically symmetric collapse, which 

satisfies the actual physical scenario, a model is given
6
. In this 

model, a dust cloud undergoes a gravitational collapse to form a 

black hole because of formation of event horizon well in 

advance to the epoch of the formation of the space-time 

singularity. In order to study collapsing models with more 

general collapsing situations and to understand the black hole 

formation in more realistic collapse scenario, it becomes 

essential to study pressures and inhomogeneities in these 

models. It also helps to put one step forward towards the cosmic 

censorship hypothesis
7
, which states that any physically realistic 

gravitational collapse must result into the development of a 

black hole. However, this hypothesis remains as a major 

unresolved problem in today’s black hole physics. 

 

Here, we study a specific class of collapse models which 

generalizes the Oppenheimer-Snyder dust collapse model by 

including pressures and inhomogeneities. The fluid content of 

the body in this class is in the form of a perfect fluid with an 

equation of state of the form p kρ= . Although the case of a 

general inhomogeneous dust collapse with 0k = has already 

been solved
8
. But, the fate of such collapsing models has not 

been discussed. Also, in recent present, an inhomogeneous 

charged black hole is discussed
9
. For the present study, we 

assume specific mass function, which is separable in the 

functions of physical radius of the body and the time coordinate. 

Similar kind of mass function is taken in
10

. But, our assumption 

facilitates us to discuss the final fate of collapse for larger value 

of mass. This fact also provides insights into the actual process 

of formation of a black hole or any lighter bodies. Also, the 

class of models described here proves essential to resolve the 

issue of cosmic censorship. Here, we examine the solutions of 

Einstein equations for spherically symmetric perfect fluid to 

discuss explicitly how a body with inhomogeneous density 

should behave in the later stages of collapse near the singularity 

so that the fate of collapse would always be a black hole or any 

lighter bodies. 

 

Space-time:  The spherically symmetric collapsing body can be 

described by the space-time geometry given by the metric in the 

comoving coordinates ( ), , ,r tθ φ  as    

( ) ( ) ( )2 , 2 ,2 2 2 2 2 2 2, sin
t r t r

ds e dt e dr R t r d d
υ ψ θ θ φ = − + + +        (1) 

 

Solution of field Equations 

For solving the Einstein equations for the metric (1) in the units

8 1G cπ = = , we consider the energy-momentum tensor of the 

type I given as
11

   

( ) ( ) ( )1 2 3 4

1 2 3 4, , , , ,rT p t r T T p t r T t rθ ρ= = = = − ,             (2) 

where ,
r

pρ  and pθ  are the energy density, radial and 

tangential pressures respectively of the body. We take the matter 

field to satisfy the weak energy condition i.e. ( ),t rρ  measured 

by any local observer is non-negative. So, for any time-like 

vector i
V , we must have   

0
i k

ik
T V V ≥                  (3) 

which reduces to 

0, 0, 0
r

p pθρ ρ ρ≥ + ≥ + ≥               (4) 
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Now, the Einstein equations are solved for metric (1) and 

energy-momentum tensor (2) as 

2 2
, r

M M
p

R R R R
ρ

′
= = −

′

&

&
                        (5) 

( )2
r r

r r

p p pR

p R p

θυ
ρ ρ

′− ′
′ = −

+ +
             (6) 

2 0
G H

R R R
G H

′
′ ′− + + =

&
& &               (7) 

and 1
M

G H
R

− = − ,               (8) 

where ( ) ( )2 2 2 2, , ,G t r e R H t r e R
ψ υ− −′= = &              (9) 

 

Here, the arbitrary function ( ),M M t r=  has an interpretation 

of the mass function for the body, which provides the total mass 

in a shell of comoving radius r on any space-like slice t =

constant. Using the energy conditions, we have 0M ≥ . In order 

to preserve the regularity at the initial epoch
i

t t= , we should 

have ( ),0 0iM t =  i.e. the mass function should vanish at the 

center of the body. As we are considering collapse scenario, we 

have 0R <&  i.e. the physical radius R  of the cloud decreases 

continuously till it reaches at 0R = . It can easily be seen from 

equation (5) that a density singularity exist in the space-time at 

0R =  and 0R′ = , where singularity at 0R′ =  is a weak 

singularity due to shell-crossings and it can be possibly removed 

from the space-time
12

. So, we consider here only the shell-

focusing singularity at 0R = as appropriate physical singularity. 

Now, by incorporating the perfect fluid form of matter given as  

( ) ( ) ( ), , , ; 1rp t r p t r k t r kθ ρ= = <  is a constant,         (10)  

 

equations (5) and (6) reduces to  

2 2

1M M

kR R R R
ρ

′
= = −

′

&

&
                          (11)   

and ( )log
1

e

k

k
υ ρ ′′ = −   +

           (12) 

By using scaling independence, we can write ( ),iR t r r=  at the 

initial epoch
i

t t= , from where the collapse commences. We 

define the time ( )st t r=  corresponds to the formation of 

singularity at 0R = . 

 

Now, we assume that the mass function can be written as a 

product of functions of R  and t  as 

( ) ( )
( )3

, ,
( )

R t
M t r M R t

R

µ

ξ
= =                                     (13) 

where ( )Rξ is a positive function of R and ( )tµ will be 

determined by the field equations. Also,  ( )tµ  is assumed as a 

differential function of t  for
0s

t t< , where 
0s

t t= is the epoch for 

the occurrence of the central singularity. We choose this mass 

function as it is capable of introducing pressures and 

inhomogeneities, which allows us to construct collapse models 

which are more general and end up in a black hole or any lighter 

bodies as we shall see. 

 

Also, we need smooth initial data i.e. at the initial epoch
i

t t= , 

density and pressures must be smooth or analytic functions.  So, 

we assume function ( )Rξ  as  

2

2
( ) 1 ..........R Rξ ξ= + +  .                               (14) 

 

Using above form of ( )Rξ , one can easily justify the existence 

of ( )Rξ in denominator of  ( ),M R t  as it increases the mass and 

the density with decreasing R . Also, by using equation (14) in 

equation (13), equation (11) provides  

( ) ( )
( )

[ ]

( ) ( )

[ ]
, 2 2

3
, , 3 ( ) ( )

( ) ( )
R

t R t
t r R t R R R

R R

µ η µ
ρ ρ ρ ξ ξ

ξ ξ
 = = = − =  (15) 

where the function ( )Rη  is given by  

( ) 2

2

1
1 ..........

3
R Rη ξ= + +              (16) 

 

At the initial epoch
i

t t= , using ( ) ( )it tµ µ=  and ( ),iR t r r= , 

we have initial density 

( ) ( )
( )

( )

2

2

0 2
2

2

1
3 1 ..........

3
,

1 ..........

i

i

t r

t r r
r

µ ξ

ρ ρ
ξ

 
+ + 

 = =
+ +

           (17) 

Here, we see that the gradients of the density and pressures of 

the body vanish at the center 0r =  at the initial epoch
i

t t=  as 

required by the smoothness. Also, for diverging density at 

singularity, we must have  

( )
0

lim
st t

tµ
→

→ ∞                           (18) 

 

Using equation (5), (13) and (15), the perfect fluid condition can 

be written as  

( ) ( ) ( ) ( )3 1 ( )
R

k t R R t
R

µ η ξ µ+ + &
&

             (19) 

By solving above equation, the mass function can be determined 

completely. 

 

By combining equations (12) and (15), we get 

( )

{ }
1

2
log

1 ( )

C Rk

k R

η
υ

ξ

 
= −  

+   
,              (20) 

where 
1

C  is a constant of integration. Using equation (20), it is 

obvious to state that   ( )Rυ υ=  i.e. the metric function υ  is a 

function of the physical radius R  only. Now, by substituting the 

value of  ( ),H t r  in equation (7), we get 
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2 0R G R Gυ′ ′− =& &                          (21) 

By solving above equation, the function ( )G R  is given as 

( ) ( ) ( ) [ ] ( )
2 4

1 1( )
k k

k kG R R Rη ξ
−

+ +=                           (22) 

Above forms of ,ρ υ  and G  completely solve the Einstein 

equations after obtaining the value of ( )tµ . 

By substituting values of , ,G H M  and υ  in equation (8), we 

get 

( ) ( ) [ ] ( ) ( ) ( ) [ ] ( )
( )2

22 4
1 11 1

2
( ) ( ) 1

( )

k kk k
k kk k

R t
R C R R R R

R

µ
η ξ η ξ

ξ

− −
+ ++ += − − +      

& (23) 

where 
( )1

2 1

k
k

C C
−

+
=  is a constant. Here, we choose negative 

sign for R&  so that it denotes the collapse scenario 0R <& . By 

substituting the values of ( )Rη  and ( )Rξ  in equation (23) and 

by ignoring the higher order terms to get the solution close to 

the singularity, we get  

( ) ( )2 2

2 2 2 2

5 10
1 1

3 1 3 1

k k
R C R R R t

k k
ξ ξ µ ξ

 
= − + − + 

+ + 
&        (24) 

Now, we solve equation (19) close to the space-time singularity 

at 0R = . For this purpose, we use equation (24) and 

approximations ( ) 1, ( ) 1R Rη ξ→ → . It reduces equation (19) in 

the form 

( ) ( )
( )

( )

2 2

1
3 1 0

10

3 1

k t t
k

C t
k

µ µ

ξ µ

+ − =

+
+

&        (25) 

Solving the above equation  with the boundary condition 

defined in equation (18), we get 

( )
( ) ( )2 0

2

2

3 1

2

sC k t t
t

e
α

α
µ α α

− + −

 
= − + + 

  
                       (26) 

where  
2

10

3 1

k

k
α ξ=

+
                                     (27) 

 

Form of  ( )tµ  given in equation (26) is solution of Einstein 

equations in the vicinity of the singularity with respect to the 

given forms of ,ρ υ  and G . Also, for above form, we have

( ) 0tµ > . By solving equation (24) in vicinity of singularity 

and by ignoring the higher order terms, we get 

( ) ( ) ( ),
P t

R t r g r e
−

=                                                 (28) 

where ( )g r  is an arbitrary function of r . For avoiding any 

shell crossing singularity, we assume ( )g r  to be an increasing 

function of r  and ( )0 0g = . In above equation (28), ( )P t  is 

given as   

( ) ( )2 2

10

3 1

k
P t C t dt

k
µ ξ= +

+∫                                     (29) 

Now, we have to decide the space-time singularity occurring at 

0R =  is covered by an event horizon or it is naked. To decide 

this, we have to think over any future directed families of null 

geodesics which if terminate at the singularity in the past and go 

out to external observer in the future, then the singularity is 

naked, otherwise it is covered by an event horizon. 

 

Results and Discussion 

According to the form of R  given in equation (28) as well as

0R <& , the singularity happens at the singular epoch
s

t t= , 

where the physical radius for all the shells with different values 

of variable r  becomes zero. In other words, as
0s

t t→ , all the 

shells collapse simultaneously to the singularity i.e. as
0s

t t→ , 

all the shells collapse simultaneously to the singularity at 0R = . 

This process generates a necessary covered central singularity at

0, 0R r= = , as there does not exist any outgoing future directed 

non space-like geodesics coming out from the same. Because, if 

these geodesics do exist in form of ( )t t r=  in t r−  plane and 

comes out from , 0
s

t t r= = , then the time coordinate must 

increase along these paths, which is not possible as there is 

complete collapse at epoch 
s

t t=  and beyond that no space-time 

exist. 

 

Conclusion 

Here, we find a singularity covered by an event horizon which 

may appear as a black hole or any lighter bodies as per the 

availability of mass at the epoch
s

t t= , where the collapse ends. 

 

Here, we generalized the homogeneous dust collapse model by 

including non-zero inhomogeneous pressures and density, 

which is more realistic physical scenario. 

 

Although, here we have shown existence of black hole or any 

lighter bodies with special choices of mass function and velocity 

profile, but similar results can also be obtained by generalizing 

the choices of mass function and velocity profile up to some 

extent. Here, it is important to state that the covered singularity 

exist within certain limits over inhomogeneities
13

. Beyond these 

critical limits of inhomogeneities, the collapse could end in a 

naked singularity. 
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