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Abstract 

Methanegas hydrates are nonstoichiometric crystalline form of solids which are form by the amalgamation of molecules of 

methane gas with the molecules of water at low temperature and high pressure. For oil, gas, chemical and other industries, 

the formation of MGHs has been a problem for many years because hydrate may block the pipelines or valves. Hydrate 

formation in a pipeline may also cause a blowout in the drilling operations. The knowledge of the equilibrium conditions of 

gas hydrate is obligatory for the economical and safe plan of operations in oil, gas, chemical industries where hydrate 

nucleation/formation occurred. It becomes important to measure the incipient conditions of hydrate formations for the system 

containing different inhibitors, promoters, salts, porous materials. The conditions of stability for MGHs in pure and seawater 

will be different because of the existence of ions and salts in seawater. The stability pressure of MGHs in seawater is higher 

than pure water, but the temperature for the gas hydrate can be lower in seawater than pure water. The stability conditions 

of MGHs can be disturbed by the simple addition of salts, electrolytes in the host sediments or water of MGHs. The co-

existence of all dissolved ions in seawater depresses the dissociation temperature for the stability of methane hydrate ranges 

between pressures of 2.75-10 MPa. For seawater with a salinity of 33.5%, the observed offset in dissociation temperature 

was 1.1℃ in comparison to pure water.  Various researchers have done various experiments to find the stability conditions of 

MGHs at different temperatures and high pressure. The equilibrium curves for the methane MGHs in porous media has been 

shifted to the high pressure and lower temperature as compared to the equilibrium curves for the bulk MGHs. 
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Introduction 

A non-stoichiometric type of crystalline solids has been formed 

by the enclatharation of gaseous molecule inside the cages of 

molecules of water, which is called as Methane Gas Hydrates 

(MGH). The formation/stability condition of these MGHs is low 

temperature and high pressure1. Clathrates area natural source of 

vast quantity of energy which may fulfill the future energy 

requirement of all over the world. The structure of MGH has the 

capacity to store a huge amount of methane gas2,3. There are 

huge quantities of naturally formed hydrate deposits in the 

earth’s crust containing methane mostly4,5. Kvenvolden 

predicted that 1016m3 of methane gas encaged inside the 

MGHs6. The MGHs can be formed in the deep oceans and 

permafrost regions both at desired stability conditions. There is 

164 m3 of gas at standard stability condition (P-T) inside the 

1m3 of MGHs. The quantity of methane in the hydrate is greater 

than the total combined fossil fuel, and hence it may become a 

great potential source of energy for the future7. A rich quantity 

of methane gas has been generated in polar regions and offshore 

continental margins of the world and hence it is the most 

abundant component of MGHs8. There are various research 

studies that are based on the formation phenomenon of MGHs 

and their dissociation approach to release methane gas from 

natural deposits of MGHs9.The formation of hydrate is one of 

the major issues for the oil & gas industry. It may plug the 

pipelines or valves and erode the surface of the equipment also 
10. The formation of MGHs may also change the viscosity of the 

oil. The dissociation of naturally formed MGHs leads to the 

leakage and damage in the pipelines because of the uncontrolled 

release of gas and wellhead blowouts etc11. The dissociated 

methane gas contributes to the greenhouse effect. Knowledge of 

the equilibrium condition of hydrate formation is an attractive 

research topic because of these devastating and costly 

consequences of hydrate formation in oil and gas, chemical 

industries. There is a need to develop some new approaches for 

the determination of phase equilibrium data to avoid the 

problems related to hydrate formation and also for the economic 

exploitation of MGHs as one of the major sources of energy in 

the future. In this study, we tried to gather incipient equilibrium 

hydrate formation data from various research studies and their 

comparison. An infinitesimal quantity of the hydratephase is 

always in equilibrium with the fluid phase in the incipient 

hydrate formation process. Hence, understanding the formation 

conditions of hydrate is required for the safe and economic plan 

of processes in oil, gas, chemical and other insdutries7. The 

reserved methane gas and water in a porous media can be 

extracted after the formation of MGHs. Water present in the 

pores and dissolved methane in water can form clathrate at 

suitable conditions. This formation of MGHs in sediments will 
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enhance the sediments strength and as a result it lowers the 

permeability and porosity of porous media12. Various studies are 

going on for the study of the occurrence of MGHs formed in 

marine sediments and porous media. To perform the research in 

the formation and exploitation of MGHs, Stability and solubility 

of MGHs are crucial parameters13. The stability conditions of 

MGHs depend upon some major parameters i.e. in situ pressure, 

temperature and salinity (P-T-S). These parameters have been 

applied for the estimation of temperature by the extrapolation of 

result findings of shallow heat studies to the deep down at 

Bottom Simulating Reflector(BSR)14–16. There are numerous 

experimental data are available on the stability conditions(P-T) 

of MGHs formed in pure water10, but very little experimental 

data are available for the stability conditions (P-T) of MGHs in 

sea water17. The direct computation of solubility of MGHs in 

seawater is not available, but numerous studies describe the 

thermodynamic approaches for the stability calculation18–20 and 

methane MGHs solubility in seawater by applying the Vander 

Waals and Plateau Model21. But the experimental data for pure 

water can be used for the prediction of properties of MGHs in 

sea water17,22. 

 

Very few studies are present, which describes the phase 

equilibria of MGHs under conditions relevant to marine 

environments. Various papers describe the three-phase 

equilibrium conditions between seawater, hydrate and free 

gas23. The stability conditions (P-T) of hydrate in seafloor 

depend upon the composition of the gas, composition of salts 

and some other additives present in seawater. The suitable 

stability conditions for MGH are located over various parts of 

the ocean floor even though the formation of hydrate is confined 

to continental margins.  

 

The MGHs will normally form where adequate availability of 

gas has been found. There are huge natural deposits of MGHs 

are located in the whole world. Fig 1 shows the locations of 

MGHs deposits in the world. The physical properties of natural 

gas hydrate reservoirs all over the world are listed in Table-2. 

 

Progress of gas hydrate expedition in India 

In India, gas hydrate expedition program was initiated under 

National Gas Hydrate Program (NGHP) with the collaboration 

of Oil and Natural Gas Corporation of India (ONGC), Gas 

Authority of India Limited (GAIL), Oil India Limited (OIL) and 

Government research Institutions such as National Institute of 

Ocean Technology (NIOT), National Institute of Oceanography 

(NIO) and National Geophysical Research Institute (NGRI). 

The NGHP is coordinated by the Directorate General of 

Hydrocarbons (DGH). 

 

In India, First BSR was reported in 1984, and the Oil and 

Natural Gas Corporation of India started the analysis of all 

available seismic data. About 80000 km2 areas in Indian seep 

offshore were observed which are favorable for the occurrence 

of MGHs. The ministry of petroleum and Natural Gas 

(MOPNG) initiated the NGHP in 1997 and the study started in 

Krishna Godavari (KG), Cauvery offshore and Gulf of Mannar. 

In 2000-2001, a 460 km line of data pertaining to the Gulf of 

Kutch, Deep Continental Shelf, Kerala Laccadive, Bengal, and 

Mahanadi offshore areas were analyzed as the potential areas 

for the exploration of MGHs. DGH collaborated with the United 

States Geological Survey (USGS) for the scientific studies 

during and after the coring and drilling program of MGHs in 

Indian offshore (NGHP-01). In 2006, the first milestone was 

achieved and they confirmed the presence of hydrate in the 

central part of Krishna Godavari offshore area. The National 

Gas Hydrate Program Expedition 02 (NGHP-02) was initiated 

off the eastern coast of India in 2015. The main aim of the 

NGHP-02 was to logging while drilling at identified sites and 

coring and wire line logging program at 20 sites in the 

deepwater Mahanadi and Krishna-Godavari basins. The drilling 

and coring task was assigned to ONGC. The aim of Expedition 

03 (NGHP-03) is to executea pilot production trial of at least 

one location/site in the Indian deep-water environment. Under 

the NGHP-02, ONGC is appointed as the nodal agency for 

central KG offshore and Reliance Industries Limited (RIL) for 

the northern KG offshore, Cauvery and Mahanadi basin54–61.
 

 
Figure-1: Locations of natural reserves of MGHs in the World and India24. 
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Table-1: Properties of Natural reserves of MGHs (expedition program) in the world. 

Exploitation 

country 

T 

(K) 

P 

(Mpa) 
Saturation 

V 

(trillion 

m3) 

Porosity 
Water 

Depth (m) 
Type of Sample 

Exploitation 

Technique 
Ref 

Canada 283 9.795 80 0.088 30-45 885-1150 

Permafrost and gas-

hydrate-bearing 

core samples 

Depressurization 

Thermal 

Stimulation 

25 

Canada 277 6.89 72 2.49 10-40 682.752 Permafrost 
Depressurization 

CO2-CH4 exchange 
26 

Russia 283 2    1300 Sand Reservoirs  27, 

28 

Russia   57-75  20-80 278.70912 

Sand, Clay, 

Precipitated Slit, 

Crushed Slit,  

 27, 

28 

Russia 
281-

285 
7.92 29-50 36.81 16-38 945-5070 Permafrost 

Depressurization 

methanol injection 
29 

Korea >293 5  0.000252 60-80 2092 

Sand,  basal  

silt-sand, 

volcaniclastic 

and siliciclastic 

sand reservoirs 

Pressurized  

drilling 

30- 

32 

US & 

Canada 
276.5 2 23-65   

47-123 

mbsf 

Marine 

sediments 

(microbiological) 

Depressurization 

thermal 

stimulation 

34- 

36 

China 275 7 13-53   
885-1530 

mbsf 
 

Fugro pressure 

Cores 
37 

Germany 281 6.7 35-65  42-60 720 Microbial  
38-

43 

Japan 
286-

288 
13.4  1.195e-7  1000 

Sandy turbidite 

type sediments at 

300m below the 

seafloor 

Depressurization 
44- 

53 

India 
278.5- 

2283.1  
16 <20 1900  500-1500   

54- 

61 

 

Table-2: Locations of Gas Hydrate (NGHP-01)54–61. 

Program 

No of 

Sites 

Located 

Water Depth 

(mbsf) 

Depth to base 

of MHSZ 

(mbsf) 

Sediment Type Reservoir Type 

KG 15 895-1285 126-203 Clay with limited silt/sand beds Possible fracture/ pore-filling 

Mahanadi 04 1374-1935 210-220 
No Core / Clay with limited 

silt/sand beds 
Possible pore/fracture filling 

Kerala 

Konkan 
01 2663 360 Carbonate Rich No MGHs 

Andaman 01 1344 620 
Clay/silt (nanofossil ooze) with 

volcanic ash beds 

Pore-filling (dispersed to 

highly saturated hydrate in ash 

beds) 
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Phase Diagram of MGHs 

Figure-1 depicts the phase diagram of MGHs in terms of 

pressure-temperature and water depth. Fig depicts the 

geothermal gradients with depth. The intersection point of the 

solid phase boundary, and geothermal gradient lines give the 

lower boundary depth of the stability of MGHs. In this region, 

MGHs are stable with only one other phase10. 

 

Discussion 

Effect of Salinity: The pressure-temperature (P-T) data for the 

dissociation and formation of MGH will depend upon the 

salinity of water in which MGHs will form. The pressure at 

which the MGH will dissociate is increased as the salinity of 

seawater enhances. The induction time for the formation of 

MGH will depend upon the degree of sub cooling and salt 

concentration62. There are three reasons due to which the 

stability conditions of MGH at the BSR’s are different than the 

stability conditions of MGH of pure water and pure methane. i. 

The diffusion and advection of dissolved/liquefied salts that are 

removed upon the formation of MGH may decrease the total 

salinity of the hydrate system. ii. inclusion of several other gases 

such that hydrogen sulfide, carbon dioxide, ethane and propane 

will increase the stability of MGH as compared to pure MGH63. 

Iii. presence of sediments will increase the stability of MGH17,64. 

The addition of simple salts such that NaCl, KCl,CaCl2, and 

mixtures of these salts in water can decrease the stability of 

MGH such that for a definite range of pressures and the 

temperature of dissociation can be decreased by a constant 

amount as compared to pure water systems23,65–67. This decrease 

occurs because dissolved ion inhibitors have no effect on the 

formation enthalpy but lower the entropy of water molecules. It 

means that the water activity is the only one parameter related to 

the equilibrium conditions of MGH that is influenced by the 

inclusion of dissolved/liquefied species68,69.  

 

The combined form of all dissolved ions of seawater also 

decreases the temperature of dissociation for MGH by a 

constant value between pressures ranges 2.75-10 MPa. Figure-3 

shows the shift in P-T conditions of MGH in seawater in 

comparison with pure water and after the injection of different 

salts (data taken from70–76). 

 

 
Figure-2: Phase diagram of MGHs. 
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Figure-3: Shift in equilibrium(P-T) conditions of MGHs formed in Pure Water, Seawater, and after the injection of salts. 
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Effect of Inhibitors: The hydrate formation in gas pipelines 

creates large pressure drop or censorious safety issues. Hence, 

prevention from the hydrate blockage is a major research area 

for the oil and gas industry. Depressurization, dehydration and 

insulation can be applied to prevent the formation of MGHs. 

But there some drawbacks to these methods such as dehydration 

is not possible between the well and dehydration units. 

Insulation is too inconvenient and economically expensive in 

the deep sea and depressurization will decrease the 

transportation capability of pipelines. Hence the most applicable 

method to avoid the blockage due to hydrate formation is the 

injection of chemicals that can decrease/inhibit the aggregation 

of MGHs inside the pipelines. The base of the hydrate inhibition 

is to keep the pressure and temperature of the hydrate system 

out of the formation region77. A practical method to prevent the 

formation of MGHs is the injection of the chemical agents into 

the hydrate system to prevent the formation of MGHs. These 

chemical agents are called as hydrate inhibitors. Hydrate 

inhibitors are divided into two categories such as 

thermodynamic hydrate inhibitors (THI), low dosage hydrate 

inhibitors (LDHIs). These inhibitors shifts curve for the aqueous 

liquid-vapor equilibrium (HLVE) to the lower temperature and 

higher pressure which forces the oil and gas system to be in 

hydrate free region. The examples of this are mostly alcohols 

and slats such as NaCl, methanol and ethylene glycol. Various 

THIs can be corrosions and toxic and harmful for the humans 

and environment hence LDHIs has been invented which consists 

of antiagglomerants (AAs) and kinetic hydrate inhibitors (KHIs) 

which didn’t change the P-T conditions of the formation of 

hydrate but delayed the nucleation of MGHs and retarded the 

hydrate growth. Hence these chemicals will avoid the blockage 

of the pipeline due to hydrate formation for duration more than 

the residence time of the free water in the pipeline. The 

concentration limit of THIs is 50wt% and KHIs is 0.1-1 wt%. 

The examples of KHIs are polyvinyl lactams and its derivatives 

such as polyvinylpyrrolidone (PVP), polyvinylcaprolactam 

(PVCap) and Gaffic VC-7137,78,79. Figure-4 shows the shift in 

equilibrium conditions of MGHs after the injection of different 

inhibitors (data taken from80). 

 

Effect of Promoters: The MGHs can reserve a huge amount of 

gas hence it can be a best alternative for the safe transport and 

storage of natural gas. But there is a problem that the hydrate 

formation process is slow and the gas uptake will be far away 

from its maximum quantity. Hence, research is going on for 

increasing the rate of formation and gas uptake of MGHs. Some 

chemicals are injected into the water to enhance the formation 

rate of hydrate. These special chemicals are called as the 

promoters for MGHs. Promoters are divided into two categories 

based on their effects such as kinetic and thermodynamic type 

of promoters. The thermodynamic type of promoters shifted the 

phase boundaries of MGH to the higher temperature or lower 

pressure. The kinetic class of promoters enhances the rate of 

formation and gas intake of MGHs. There are several research 

studies are available which studied the effect of promoters as a 

former of hydrate on the formation conditions. The example of 

the thermodynamic promoter is propanone, 1,4-dioxane on 

methane MGHs and kinetic promoters are surfactants on ethane 

MGHs, sodium dodecyl sulfate, hydrotropes, hexadecyl-

trimethyl-ammonium bromide (CTAB) and 2-(2-nonylphenoxy) 

ethanol (ENP)81,82. Figure-5 shows the shift in equilibrium 

conditions of MGH in the presence of different promoters (data 

taken from83,84). 
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Figure-4: Shift in equilibrium conditions(P-T) of MGHs formed in Pure water afterthe injection of inhibitors. 
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Effect of Porous materials and Pore Size: The equilibrium 

condition of methane MGHs is necessary for the observation of 

the total efficiency of gas hydrate fields. This is also important 

to locate the bottom stability zone of the methane gas hydrate 

and to establish the rate of formation and rate of dissociation of 

MGH. The stability conditions of MGHs are calculated using 

the bottom simulating reflector (BSR) and changes in 

equilibrium conditions in sediments as compare with the 

methane hydrate formed during laboratory works11. The 

equilibrium condition (P-T) of methane MGHs can be affected 

by the compositions of gas and concentrations of solute and 

both can be used for the prediction of the formation condition of 

MGHs. The pressure for the dissociation of methane MGHs 

formed in small pores will be greater than those in bulk phase 

because of the effect of water accommodation in the small pore 

space85. The temperature for the dissociation of the THF 

hydrates formed in Loam, sand and bentonite decreases as 

compared with the pure hydrate86. The equilibrium conditions 

(P-T) of MGHs will be affected by the surface and capillary 

effects in porous media87. Miyawaki studied the adsorption of 

methane in Nanoscale pores. The structure of MGHs in porous 

media is dissimilar as compared to bulk cubic hydrate due to the 

smaller pore size as compared to the lattice constant of the 

MGHs of structure I  type88. The dissociation temperature of 

MGH in confined small pores (100-500A) has been significant 

downward shifts in porous glass than bulk hydrate at a known 

pressure. This shift in dissociation conditions in the presence of 

small pores is due to the change in the water activity and this 

change in water activity can be measured by the Gibbs-

Thomson effect89.  Uchida predicted that the temperature of the 

dissociation of CH4, CO2 and C3H8 hydrate was shifted to the 

lower value for bulk hydrate for a given pressure. All shifts in 

temperature were fitted by the equation of Gibbs-Thomson with 

the prediction of interfacial energies. They concluded that the 

effect of pore on the phase equilibrium was because of the 

change in water activity90. The three-phase water-hydrate vapor 

equilibrium curves were increased to the higher pressure for the 

pore sizes as compared to bulk MGHs at specific 

temperatures91. There are various studies that show that for a 

temperature range, the dissociation pressures for the MGH in 

silica gel pores will be greater than those for bulk92,93. The 

equilibrium curves for the MGHs in porous media have been 

shifted at the high pressure and low temperature as compare to 

the equilibrium curves for the bulk MGHs94. Figure-6 shows the 

shift in P-T conditions of MGH in the presence of different 

porous materials (data taken from 89,93,95–100). 

 
Figure-5: Shift in P-T data of MGH in Pure water and with the promoters. 
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Figure-6: Shift in P-T data for MGH for porous media and pore size. 
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Conclusion 

The stability conditions of MGHs in seawater and pure water 

will be different because of the existence of ions and salts in 

seawater. The P-Tdata for the equilibrium conditions for MGHs 

are different. MGH will be stable at higher pressure and lower 

temperature in seawater in comparison with pure water. The 

stability conditions of MGHs can be disturbed by the simple 

addition of salts, electrolytes in the host sediments or water of 

MGHs. All coexisted dissolved ions of seawater depress the 

dissociation temperature (T) for the stability of methane hydrate 

ranges between pressures of 2.75-10 MPa. Because of the 

salinity of 33.5% in seawater, the observed offset in dissociation 

temperature was 1.10C as compared to pure water. Various 

researchers have done various experiments to find the stability 

conditions of MGHs at different temperatures and high pressure. 

The concentration of methane can also affect the stability 

conditions of methane MGHs. Some researchers conducted the 

dissociation experiment with the different concentrations of 

methane and ethane to show the variation of temperature and 

pressure. The addition of some salts in the host water of MGHs 

can also disturb the equilibrium conditions of MGHs. The 

stability condition of MGHs in water and methanol solutions 

can be different because of the inhibiting strength of salts. The 

promoters promote the formation of MGHs to some extent. The 

presence of porous media and the size of pores also affect the 

stability data of MGH.  
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