

International Research Journal of Environment Sciences_ Vol. **5(9)**, 1-9, September (**2016**)

Ichthyofaunal Diversity of Komo River, tributary of Alima River, Congo Brazzaille

Mady-Goma Dirat I.^{1*}, Mikia M.^{1,2}, Tsoumou A.^{1,2} and Vouidibio J.²

¹Laboratory of Animal Biology and Ecology Research, Superior Normal School, University Marien Ngouabi, PoB 69 Brazzaville, Congo ²Faculty of Sciences and Techniques, University Marien Ngouabi, PoB 69 Brazzaville, Congo isadir2007@yahoo.fr

Available online at: www.isca.in, www.isca.me

Received 20th July 2015, revised 4th August 2016, accepted 18th September 2016

Abstract

The fish fauna of the right bank of Congo River was little known, but the investigations were currently underway. They aimed to take stock of the different streams of Congo Brazzaville. A study of the fish fauna of the Komo River was conducted in two stations using gill nets, and nets.86 species grouped in 44 genera, 20 families and 9 orders were identified. Osteoglossiformes was the most represented order with 31%. The Mormyridae was the most represented family with 26% of species. Xenomystus nigri was the most abundant species (13%) in station 1; the two most abundant species in station 2 were Phenacogrammus interruptus (34.8%) and Alestopetersius hilgendorphi (33.2%). The Shannon index was high in both stations, the settlement of the station 1 was balanced with a value of equitability greater than 0.8. On the contrary, equitability value was 0.6 in station 2, proof of an unbalanced population.

Keywords: Komo River, Congo Brazzaville, Ichthyofaunal diversity, Shannon index, Equitability.

Introduction

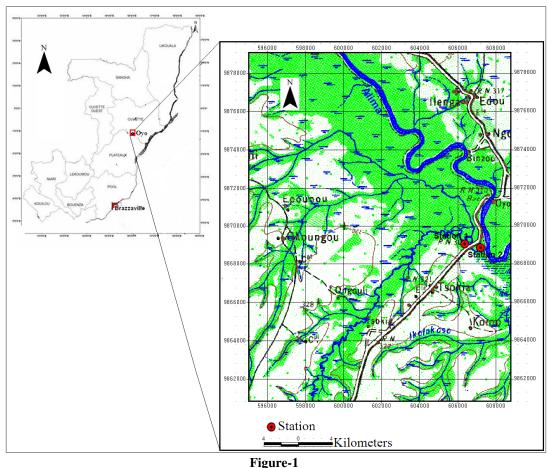
The main threats (habitat destruction, habitat fragmentation, pollution, climate change, over exploitation of resources, invasive exotic species and disease spread) are related to human activities. These seven factors may interact synergistically and accelerate the loss of biodiversity¹. Any conservation strategy requires knowledge of indigenous plant and animal species and their interactions with their environment. Anthropogenic activities such as modification of the environment, culture, harvesting and effects of modernization have contributed to the pollution of the water bodies which serve as habitat for fishes².

Fish research has become an increasingly important study area, as fish population is declining throughout the world. Studies of spatial and temporal patterns of diversity, distribution and composition of freshwater fishes are useful to examine different factors that influence the structure of the fish abundance and health of fish will show the health of water bodies³. Fish is used as a significant source of protein for millions of people around the world. Human population explosion has placed a significant demand on fish as a food source. The decline of fish has an adverse impact on aquatic ecosystems as well as a significant impact on human population as it is one of the primary food sources⁴. A perfect understanding of the ichthyofaunal diversity of a system is an essential prerequisite for successful implementation of fisheries development, sustainable utilization of fishery resources and for adopting suitable conservation measures⁵. The fish fauna of the right bank of the Congo Basin, is very poorly known. Some fragmentary studies mostly old, on fish fauna of Alima and Sangha⁶, on the right bank of the Middle Congo⁷; a summary census work of the fish fauna of the Congo Basin was given⁸ and the study of fish fauna of Likouala aux Herbes River⁹. During this last decade, differents works were conducted to inventory fish fauna ofthe right bank tributaries of Congo River: in the Mambili River¹⁰; in Alima River¹¹; in Likouala aux herbes River¹²; in right bank of Congo River (Pool Malebo)¹³; in Lefini River¹⁴; in Djiri River¹⁵, in Tsieme River¹⁶, Mfilou River¹⁷. Present investigations, were undertaken to study fish fauna of Komo River, fish species has been inventoried and identified; diversity and equitability of fish population were assessed.

Materials and Methods

Study area: The survey was conducted on the Komo River tributary of the Alima, sub-tributary of the Congo River which is located north of Plateaux Department on the National Road 2, altitude on the road bridge is 311meters (Figure-1). Station 1 is located at $15^{\circ}95'67.5''$ South latitude and $1^{\circ}18'28.70''$ East longitude. Station 2 is located at $01^{\circ}11'16.1''$ South latitude and $15^{\circ}57'47.7''$ East longitude.

Sampling methods: Sampling of fish fauna was conducted in two stations from 20 to 22 July 2004 and from 20 to 22 April 2008, on either side of the bridge on the national 2. Station 1 is upstream of the bridge and station 2 is downstream of the bridge. The physico-chemical parameters of the water surface were measured: air temperature and surface water temperature using thermometer, dissolved oxygen using an oxymeterbr and WTW, conductivity using a WTW brand conductimeter and turbidity with aturbidimeter brand Eutech. The fish capture was


International Research Journal of Environment Sciences Vol. 5(9), 1-9, September (2016)

made using the following fishing gears: gillnets, castnets and nets. Fishes identified using conventional identification keys^{10,18-26}, were then photographed and fixed in10% formalin before storage in 70°C alcohol.

Results and Discussion

Physico-chemical parameters of surface water: Physicochemical parameters of surface water are recorded (Table-1). The water temperature in the two stations was similar, pH of Komo River was acidic in station 1 (4.05) and station 2 (4.5); dissolved oxygen rate was lower in station 1(1.03mg.l⁻¹) and in station $2(1.57 \text{ mg.l}^{-1})$. The conductivity varied considerably between station 1(21.9µS.cm⁻¹) and station 2(10,96µS/cm), proof of low mineralization water. A previous study in the same river showed that pH values (4.5) and dissolved oxygen (1.5 $mg.1^{-1}$) were similar to those obtained in station 2; the conductivity value was 18.28 (μ S.cm⁻¹) is close to that of the station 1. Turbidity was very low with 0.3NTU in station 1and0.52NTU in station 2.

Fish fauna composition: The preliminary study of the Komo River permitted to identify 1217 fishes including 86 species grouped in 44 genera, 20 families and 9 orders (Table-2). Each species is presented by its scientific name followed by a local name (Mbochi) and vernacular name (Lingala and Kikongo).

Study area map

Physico-chemical parameters of surface water					
	Temperature °C	рН	Dissolved oxygen (mg/l)	Conductivity (µS/cm)	Turbidity (NTU)
Station 1	24.39	4.05	1.03	21.9	0.3
Station 2	24.9	4.5	1.57	10.96	0.52

Table-1

Orders and	List of identified species (20-22 July 2	Local name	2008) Vernacular name	
Families	Scientific Name	Mbochi	Lingala	Kikongo
	Lepidosirenifor	mes	8	
Protopteridae	1.Protopterus dolloï (Boulenger, 1900	Niombo	Ndzombo	Njomo
1	Polypteriform	ies		5
Polypteridae	2.Polypterus congicus Poll,1954	Konga	Mokonga	Mukuwa
	Osteoglossifor	mes		
Pantodontidae	3.Pantodon buchholzi Peters, 1877	Itsatsa	-	-
Osteoglossidae	4. Heterotis niloticus	-	Congo ya sika	-
	5.Papyrocranus afer (Günther, 1868)	Ilembe	-	Peko
Notopteridae	6.Xenomystus nigri(Günther, 1868)	Lépè	Peke	Peko
	7.Campylomormyrus tamandua ((Günther, 1864)	Obubusu	-	-
	8. Gnathonemus petersii (Günther, 1862)	Lembubè lonô ola	Mbese	Mpima
	9.Gnathonemus sp.	Lembubè lonô ola	Mbese	Mpima
	10.Marcusenius fritelli (Pellegrin, 1904)	Lembubè	Mbese	Boso
	11.Marcusenius kutuensis(Boulenger, 1899)	Lembubè	Mbese	Boso
	12.Marcusenius moorii (Gill,1862)	Lembubè	Mbese	Boso
	13.Marcusenius sp1	Lembubè	Mbese	Boso
	14.Marcusenius sp2	Lembubè	Mbese	Boso
	15.Marcusenius sp3	Lembubè	Mbese	Boso
	16.Mormyrops anguilloïdes (Linné, 1758)	Lenianda	Ndzanda	Mbese
Mormyridae	17.Mormyrops deliciosus (Leach, 1818)	Lembubè	Mbese	Mbese
Mormyridae	18.Mormyrops nigricans Boulenger, 1899	Lembubè	Mbese	Mbese
	19.Mormyrops zanclirostris (Günther, 1898)	Lembubè	Mbese	Mbese
	20.Mormyrops sirenoïdes Boulenger, 1898	Mokouro	Monoko ndzombo	Mbese
	21.Petrocephalus ballayi Sauvage, 1898	Iguiènde	Mbese	Mbese
	22.Petrocephalus microphthalmus Pellegrin, 1908	Iguiènde	Mbese	Mbese
	23.Petrocephalus sauvagi Boulenger, 1887	Iguiènde	Mbese	Mbese
	24.Petrocephalus sp1	Iguiènde	Mbese	Mbese
	25.Petrocephalus sp2	Iguièndè	Mbese	Mbese
	26.Petrocephalus sp3	Iguièndè	Mbese	Mbese
	27.Pollimyrus sp Taverne, 1971	Lémbubè	Mbese	Mbese
	Clupeiforme	2S		
<i>c</i> 1 • • •	28. Pellonula leonensis Boulenger, 1916	Lendzâa	-	Nsangi
Clupeidae	29.Pellonulavorax Günther,1868	Lendzâa	-	Nsangi
	Gonorhynchifo	rmes		
Phractolaemidae	30.Phractolaemus ansorgii (Boulenger, 1901)	Okisi	-	-

Table-2	
List of identified species (20-22 July 2004 and 20-22 April 2008)

Orders and	Select PP - Norma	Local name	Vernacular name	
Families	Scientific Name	Mbochi	Lingala	Kikongo
	Characiforme	s		·
Hepsetidae	31.Hepsetus odoe (Bloch, 1794	Muengue	Muengue	Muengue
Ŷ	32.Alestes liebrechtsii (Boulenger, 1898)	Okowfi	Mokobe	-
	33.Alestes dentex (Linné, 1758)	Okowfi	Mokobe	-
	34.Alestopetersius caudalis (Boulenger, 1899)	Lendzâa		Mpemo
	35.Alestopetersius hilgendorfi (Boulenger, 1899)	Lendzâa	-	Mpemo
	36.Alestopetersius nigropterus (Poll, 1967)	Lendzâa	-	Mpemo
	37.Brachypetersius altus (Boulenger, 1896)	-	-	-
Alestidae	38.Brycinus carmesinus (Nichols et Griscom, 1917)	Engondokoro	-	Мароуо
	39. Brycinus kingsleyae (Günther, 1896)	Engondokoro	-	Мароуо
	40.Bryconaethiops boulengeri (Pellegrin, 1900)	Letsuèlè	-	Mpemo
	41.Hydrocynus forskalii (Cuvier, 1819) *	Mbenga	Mbenga	Mbenga
	42.Hydrocynus goliath (Boulenger, 1898)	Mbenga	Mbenga	Mbenga
	43. Micralestes occidentalis (Günther, 1899)	Lendzâa	-	-
	44.Phenacogrammus interruptus (Boulenger, 1899)	-	-	-
	45.Distichodus affinis (Gunther, 1873)	Mboro	Mboto	-
	46.Distichodus altus (Boulenger, 1899)	Mboro	Mboto	-
	47.Distichodus noboli (Boulenger, 1899)	Mboro	Mboto	-
Distichodontidae	48. Eugnathichthys macroterolepis (Boulenger, 1899)	-	-	-
	49. Mesoborus crocodilus (Pellegrin, 1900)	-	-	-
	50.Microstomatichthyoborus bashforddeani Nichols (Griscom, 1917)	Nzambakana	-	-
	51.Phago intermedius (Boulenger, 1899)	Osogno	-	Mutitikidi
Citharinidae	52. Citharinus macrolepis (A. Tinant, 1937) *	Iyanga	Liyanga	Yanga
Citilar initiat	53. Citharinus gibbosus (Boulenger, 1899)	Iyanga	Liyanga	Yanga
	Siluriformes			
	54. Chrysichthysornatus (Boulenger, 1902)	Ibarâbara	mosuaro	ke
Claroteidae	55. Chrysichthys punctatus (Boulenger, 1899)	-	mosuaro	-
	56. Chrysichthys thonneri (Steindachner, 1912)	-	mosuaro	
	57.Parauchenoglanis punctatus (Sauvage, 1879)	Ikagna	-	-
	58.Schilbe grenfelli (Boulenger, 1900)	Ilangwa	Lilangwa	Langwa
Schilbeidae	59.Schilbe marmoratus (Boulenger, 1911)	Iwfelèlè	Lilangwa	Langwa
	60.Pareutropius debauwi (Boulenger, 1900)	Ilangwa	Lilangwa	Langwa
	61. Channallabesapus (Günther, 1873)*	Ongambiri	Mongambili	N'tondi
Clariidae	62. Clarias buthupogon Sauvage, 1879	Ibongo	Ngolo	Ngola
	63. Clariasgariepinus (Burchell, 1922)	Ngolo	Ngolo	Ngola
Malapteruridae	64.Malapterurus electricus (Lacépède, 1803)	Nina	Nina	Tsula

Orders and		Local name	Vernacular name	
Families	Scientific Name	Mbochi	Lingala	Kikongo
	65.Synodontis contractus (Vinciguera, 1928)	Ikoula	Likoko	Nkoko
	66.Synodontis caudalis (Boulenger, 1899)	Ikô	Likoko	Nkoko
	67.Synodontis centralis (Poll, 1971)	Ikô	Likoko	Nkoko
Mochokidae	68. Synodontis flavitaeniatus (Boulenger, 1919)	Ikô la ngongo	Likoko	Nkoko
	69.Synodontis lufirae (Poll, 1971)	Ikô	Likoko	Nkoko
	70.Synodontis nigriventris (David, 1936)	Ikô la pèli	Likoko	Nkoko
	71.Synodontis schoutedeni David, 1936	Ikô	Likoko	Nkoko
	Gonorhynchifor	rmes		
Channidae	72.Parachanna insignis (Günther, 1861)	Tsinga	Mongusu	Nsinga
	Perciformes			
	73. Ctenopoma acutirostre (Pellegrin, 1899)	Ewfa	-	Tsimpete tsia nkuku
	74. Ctenopoma kingsleyae (Günther, 1896)	Ewfa	-	-
	75. Ctenopoma nanum (Günther, 1896)	Ewfa	-	-
Anabantidae	76. Ctenopoma nebulosum (Norris & Teugels 1990)	Ewfa	-	-
	77. Ctenopoma nigropannosum (Reichenow, 1875)	Olombi	Mokengue	-
	78. Ctenopoma pellegrini (Boulenger, 1902)	Olombi	Mokengue	-
	79. Hemichromis bimaculatus (Gill, 1862)	Lekanga	Libundu	-
	80.Hemichromis fasciatus (Peters, 1852)	Ikiè	Libundu	-
Cichlidae	81.Pelmatochromis nigrofasciatus (Pellegrin, 1900)	Mbô	Libundu	-
	82.Tilapia sp	Mbô	Libundu	-
	83. Tilapia tholloni (Sauvage, 1884)	Mbô	Libundu	-
	84. Tylochromis lateralis (A. Tinant, 1937)	Lègnèndè	Libundu	Kingulu
Cyprinodontiform	nes			
	85.Epiplatys singa (Boulenger, 1899)	Ombongo	-	-
Aplocheilidae	86.Epiplatys sp.	Ombongo	-	-
	87.Aphyosemion sp.	Ombongo	-	-

Species richness of orders: Proportional representation of species richness of orders showed that Osteoglossiformes were the most represented order with31% (Figure-2), followed by Characiformes (27%), Siluriformes (20%), Perciformes (15%), Cyprinodontiformes (2%), Clupeiformes (1%), Lepidosireni formes (1%) Polypteri formes (1%), Gonorhynchi formes (1%). The species richness of orders showed that orders were the same and dominated like in all streams of the Congo Basin excepted Cypriniformes, Tetraodonti formes and Synbranchi formes. The same most representative orders were found in varyingpro portions 9,13,15 : Siluriformes (23.5%), Perciformes (18.7%) Osteoglossi formes (16.5%), Cypriniformes (16.3%).Characiformes (14.3%). The absence of Cypriniformes, Tetraodontiformes and Synbranchiformes in Komo River, could be explained by the low rate of water oxygenation.

Species richness of families: During this study, 21 families were identified. Species proportional representation per family (Figure-3) showed that Mormyridae 26%) dominated the collection, followed by Alestidae and Distichidontidae (12%) followed by Mockokida especies (9%) Anabantidae (7%), Cichlidae (6%), Clariidae and Claroteidae (4%), Schilbeidae, Notopteridae and Aplocheleidae (2%). The others families represented 1%. The specific distribution of families of the Komo River is similar to that obtained in the Alima River¹², the four most represented families were Alestidae and Mormyridae (15.17%) followed by the Cichlidae (14.28%) and Distichodontidae (10.71). The three most represented families found in Mambili river, Lefini river, Djiri river were similar, but in a different order^{11,15-17}: Mormyridae was the most represented (22%), followed by Distichodontidae (14%), Alestidae (12.6%) and Mockokidae (10,66%). The study of Congo Basin fish

International Research Journal of Environment Sciences _ Vol. 5(9), 1-9, September (2016)

fauna, showed the predominance of Cyprinidae (16.6%) and Mormyridae (16.3%) followed by Cichlidae (13.1%), Mockokidae (8.7%), Alestidae (7%) and Distichodontidae ($(6.8\%)^9$). Cyprinidae, Mastacembelidae and Tetraodontidae were present in the others rivers of Congo basin but were absent in Komo River, probably because water was less oxygenated. **Relative abundance:** The distribution of species in station1 was balanced with a slight predominance of *Xenomystus nigri* (13%) followed by station 2, two species were most represented: *Phenacogrammus interruptus* (35%) and *Alestopetersius hilgendorphi* (33%), which suggested existence of an ecological niche for the two species (Figures-4a and 4b).

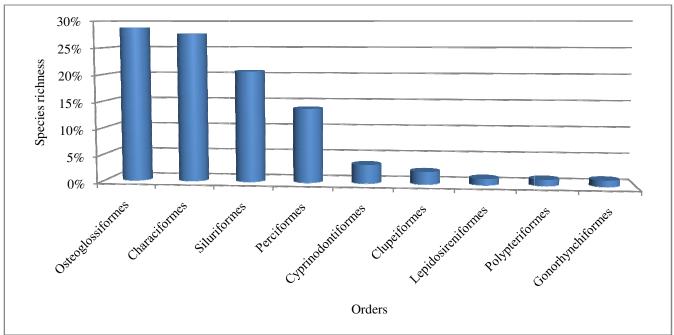


Figure-2 Proportional representation of specific richness of orders

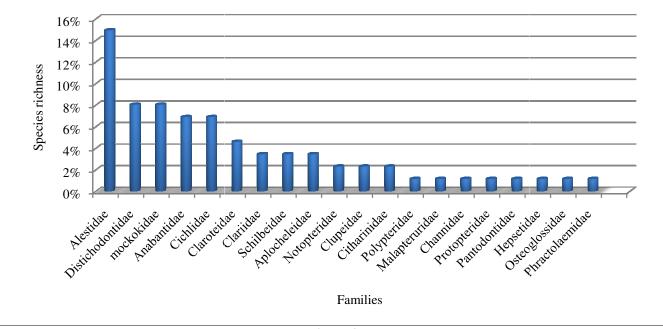


Figure-3 Proportional representation of specific richness of families

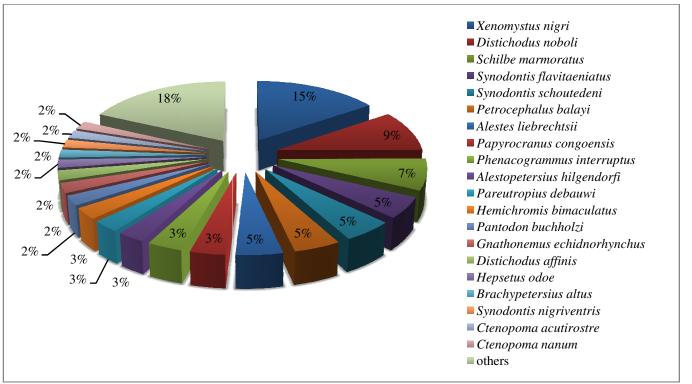


Figure-4a Specific relative abundance in station 1

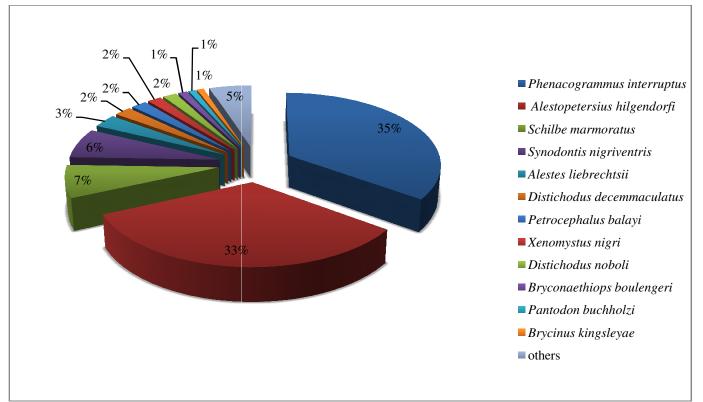


Figure-4b Specific relative abundance in station 2

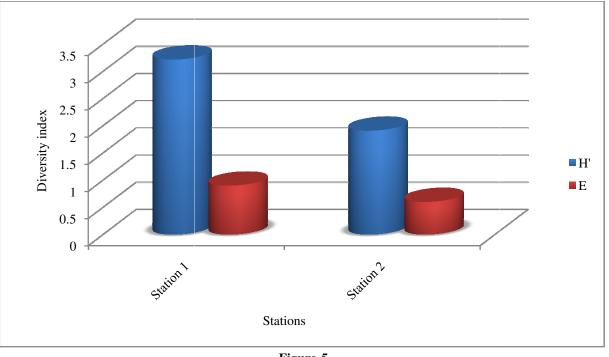


Figure-5 Diversity index in the two stations

Diversity index: Diversity index were calculated in the two sampling stations with fishes captured with gillnets. Shannon index was lower in station 1(H = 3.22) than in the station 2(H'=1.91). Equitability in the station 1 was 0.9, reflecting a balanced population. In contrary, in station 2, equitability was 0.6, this value was less than 0.7, which corresponds to an unbalanced population (Figure-5).

Conclusion

This preliminary study of fish fauna of the lower course of the Komo River (Alima basin) showed that this river has high species richness with 86 species of fishes including 20 families grouped in 44 genera and 9 orders. This river as a feature, the oxygen level was very low; hence the absence of Cyprinidae, Mastacembelidae and Tetraodontidae that require well oxygenated water. Spatio-temporal studies should be conducted to complement this study to better describe the fish populations in the lower course of this river.

Acknowledgment

We thank Congolese National Petroleum Company (CNPC) for financial support

References

1. Groom M.J., Meffe G.K. and Caroll C.R. (2006). Principles of Conservation Biology. 3ed. Sinauer Associates, Sunderland, MA. 124.

- 2. Tiwari R.N. (2011). Assessment of groundwater quality and pollution potential of Jawa Block Rewa District, Madhya Pradesh, India. Proc. Int. Academy of Ecology and Environmental Sciences, 1(3-4), 202-212.
- **3.** Hamzah N. (2007). Assessment on water quality and biodiversity within Sungai Batu Pahat. M.phil thesis, University Teknologi Malaysia, 124.
- 4. Mohan V.C., Sharma K.K., Sharma A. and Watts P. (2013). The Study of Ichthyofaunal Diversity of Chenani Hydroelectric Reservoir, Udhampur (J&K) India. *Res. J. Animal, Veterinary and Fishery Sci.*, 1(3),14-15.
- 5. Gohil Mahendrasinh N. and Mankodi Pradeep C. (2013). Diversity of Fish Fauna from Downstream Zone of River Mahisagar, Gujarat State, India. *Int. Res. J. Environment Sci.* 2(6), 8-12.
- 6. Pellegrin J. (1930). Fishes of Ogooué, Kouilou, Alima and Sangha collected by A. Baudon, Description of five species and five new varieties. *Bull. Soc. Zool*. *Fr.*, 55, 196-210.
- Daget J. and Stauch A. (1963). Fishes of the right bank of the Middle Congo. Mission A. Stauch (February-April 1961). Bull. Inst. Rech.Sci./Congo, 2, 41-48.
- 8. Teugels G.G. and Guegan J.F. (1994). Biological diversity of freshwater fish of Lower Guinea and Central Africa. Teugels G. G., Guegan J. F. and Albaret J.J., Biodiversity of freshwater fish and brackish African M.R.A.C., Tervuren, Belgium, *Annales Sciences Zoologiques*, 272, 67-85.

- **9.** Laraque A., Pouyaud B., Chauffau I., Moutsambote J.M., Maziezoula B., Censier C., Elenga H., Etcheber H., Delaune M., Sondag F. and Gasse F. (1996). The basin of the Likouala aux Herbes (Northern Congo) and his enigmatic Lac Tele, or the Lac Tele (Northern Congo) is it of meteoritic origin? Or first study of the strange Lac Télé the heart of particular basin of the Likouala aux Herbes (Northern Congo). AFVP, IPC, and DGRST IFRSDC, 17.
- **10.** Sullivan J.P., Lavoue S. and Friel J.P. (2002). Discovering fishes of the Odzala National Park. Canopy, 26, 5.
- **11.** Mady-Goma Dirat I., Tsoumou A. and Vouidibio J. (2006). Preliminary data on fish fauna of the lower Alima (Congo basin). *Mbongui, Multidisciplinary Research Journal,* University Marien Ngouabi, 1(5), 39-52.
- **12.** Mamonekene V. (2006). Fishery resources of the Community reserve of Lake Télé / Likouala Diversity and exploitation. Consultation Report, 25.
- **13.** Mady -Goma Dirat I., Mikia M., Tsoumou A., Vouidibio J. and Pandare D. (2008). Preliminary data on fish fauna of Kintélé (Pool Malebo). *Annals of the University Marien Ngouabi*, 9(4), 51-62.
- 14. Ibala Zamba A. (2010). Fauna of fish from rivers and Lefini Luki (Congo Basin): Diversity and Ecology. Ph.D. Thesis in Science, University of Leuven, 452.
- **15.** Mikia M., Mady-Goma Dirat I., Tsoumou A., Mabanza J., Vouidibio J. and Diatewa M. (2013). Preliminary Data on the Ichtyofaun of Djiri River (Affluent of right bank of Congo River). *Int. Res. J. Environment Sci.*, 2(10), 1-5.
- 16. Olabi-Obath D.B.C., Mady-Goma Dirat I., Mikia M., Tsoumou A. and Vouidibio J. (2013). Preliminary biodiversity inventory of Ichtyofaunaof Tsieme River, A tributary of Congo River (Pool-Malebo). Int. Res. J. Environment Sci., 2(12), 1-8.

- 17. Mady-Goma Dirat I., Mikia M., Tsoumou A., Vouidibio J. and Pandare D. (2013). Study of ichtyofauna biodiversity of rigth bank of Pool Malebo (Congo River). *Res. J. Animal, Veterinary and Fishery Sci.*, 1(10), 23-25,
- Poll M. (1957). The kinds of freshwater fishes from Africa. Annals of the Royal Museum of the Belgian Congo, Tervuren, Series 8°, Zoological Science, 54, 175.
- Poll M. (1967). Review of african dwarf Characidae. Annals of Royal Museum of Central Africa, Tervuren, Belgium. 8° Series, Zoological Sciences, 162, 157.
- **20.** Daget J., Gosse J. P. and Thys Van Den Audenaerde D.F.E. (1984). Check-list of the freshwater fishes of Afica. . Cloffa 1. Bruxelles, MRAC (Tervuren), ORSTOM (Paris), 409.
- **21.** Daget J., Gosse J.P. and Thys Van Den Audenaerde D.F.E. (1986). Check-list of the freshwater fishes of Africa. Cloffa 2. Bruxelles, MRA, Tervuren, ORSTOM (Paris), 520.
- **22.** Daget J., Gosse J. P. and Thys Van Den Audenaerde D.F.E. (1991). Check-list of the freshwater fishes of Africa. Cloffa 4. Bruxelles, MRAC, Tervuren,), ORSTOM, Paris, 740.
- **23.** Paugy D. (1986). Studies and thesis, Systematic review of african Alestes and Brycinus, Pisces, Characidae. Editions of ORSTOM, Paris, 295.
- **24.** Leveque C., Paugy D. and Teugels G.G. (1990). Fish fauna of freshwater and brackish of West Africa. Tropical Fauna Collection, XXVIII, I, RMCA Tervuren & ORSTOM Paris, 385.
- **25.** Leveque C., Paugy D. and Teugels G.G. (1992). Animal fish freshwater and brackish West Africa. Tropical Fauna Collection. XXVIII, II, RMCA (Tervuren) & ORSTOM Paris, 386-902.
- **26.** Mbega J.D. and Teugels G.G. (2003). Fish identification guide of the lower basin of Ogooué. IRAF (Gabon), RMCA (Tervuren, Belgium), University Press of Namur, 13, 165.