

Species Richness and Diversity of Ichthyofaunal communities of the Lower Cross River floodplain, Nigeria

Ekpo I.E. and Udoh J.P.*

Department of Fisheries and Aquatic Environmental Management, University of Uyo, P.M.B. 1017, Uyo - 520001, NIGERIA

Available online at: www.isca.in

Received 2nd February 2013, revised 15th April 2013, accepted 10th June 2013

Abstract

The ichthyofaunal composition of the floodplains of the Lower Cross River was investigated and compared in order to promote its management. A total of 5211 fish were sampled for 12 consecutive months from commercial landings of artisanal fishers from three sampling stations. We estimate 77 species distributed into 52 genera, 29 families and 9 orders, both of freshwater (88.66%) and euryhaline (marine intrusive) fishes (11.34%), with averagely 1-3 species per genus. The fishes composed mainly Perciformes, the least being Polypteriformes and Clupeiformes.. The five most abundant fish families are the Bagridae > Cichlidae > Mormyridae > Mugilidae and Cyprinidae. Study suggests growth and recruitment overfishing with populations generally bigger upstream than their counterparts downstream and elucidates contributions of floodplains as nursing and spawning grounds in river fisheries and productivity.

Keywords: Bagridae, classification, conservation, fish sizes, rare species

Introduction

One characteristic feature of most tropical rivers, like the Cross River, is the high endemic multi-species diversity of the fish fauna. The Niger Delta with Cross River Barrier lagoon system (Nigeria) was classified in the "A List" as areas unanimously recognized to be of Outstanding Universal biodiversity Value (OUV) by a UNESCO biodiversity study team. Similarly the Cross River Estuary (Nigeria, Cameroon) was classified in the "B List" as areas identified to have significant components of OUV. The "C List" comprises areas that may be of OUV but lack adequate information for assessment¹. These wetland systems comprise part of the West African Flyway, a major migratory bird route that provides year round habitat for many bird species. The Cross river is a major hydrographic feature in the Gulf of Guinea and possesses attributes of OUV in relation to Nigeria's fish biodiversity (updated from 239 fish species in 46 families² and 511 species in 121 families³ to 648 fish species in the fourth National Biodiversity Report⁴).

This paper provides multi-gear and multi-species ichthyofaunal composition of the floodplains of the Lower Cross River in comparison with others in order to share, update information, and provides data for further analysis and to promote discussions for the management of the fishery to avoid risk of fish stock collapse and loss of invaluable ecosystem goods.

Material and Methods

The main channel of the Cross river has a total surface area of $70,000 \text{ km}^2$ of which $50,000 \text{ km}^2$ is at the lower reaches. At bankful, the Lower Cross River (LCR) is approximately 7m deep and inundates an area (floodplain) of approximately 8000 km². The floodplain contains numerous swamps, pools and

lagoons that are often isolated from the main river, sometimes in the dry season⁵. The river channels, floodplain pools, lakes and marginal swamps provide a range of habitats for different fish species.

Three sampling stations (S_{1-3}) were established along the extensive floodplains in the freshwater zone of the inshore waters of the LCR (379437.913mE and 558778.199mN), Southeastern Nigeria at Esuk Nnyanyaha, S₁ (along a meander of the CR tributary), Ikot Offiong, S₂ (along the main channel) and Nwaniba, S₃ (around the river mouth), (figure-1). The river is subject to seasonal flooding between July and October. The area experiences, the wet season in April – October and the dry in November-March. Most of the flood areas dry up as the water recedes^{5,6}.

The commercial landings of artisanal and subsistence fishers along the floodplains from the three sampling stations were randomly sampled bimonthly, over a period of 12 calendar months. Fish samples were identified and measured to the nearest 0.1cm total length (TL) and 0.1g total weight (TW); some samples were preserved in 10% diluted formaldehyde. Keys were used in fish identification⁶⁻⁸. Fish condition factor was calculated as: $K = 100 \text{ TW}.\text{TL}^{-3}$.

The pooled data of catches by all gear types in each sampling station was used in assessing abundance by calculating the index of preponderance $(IP)^{9-10}$. $IP = [(\%N\%W).100]. [\Sigma(\%N\%W)]^{-1}$. Fishes with IP values less than (<) 0.50 were regarded as being of relatively insignificant contribution while those with IP values greater than (>) 0.50 were regarded as being significant contribution⁵. Ecological indices¹¹⁻¹³ were used to classify the environment, describe the structure of the community and compare the sampling stations. The relative floodplain diversity $(RFD)^{14}$ of each of the 3 habitats was calculated as $RFD = 100 \times [Fn + Gn + Sn) \cdot N^{-1}]$, where F_n , G_n and S_n are respectively, numbers of families, genera and species, and N = 348 (sum of numbers of families, genera and species in floodplain of all the three habitats investigated. Comparative analysis of fish diversity, with similar African rivers, in relation to basin area was established using overall biological diversity indices, B_A^{15} and species richness, N^{16} : $N = 5 \times S0^{0.25}$

 $B_A = \sum (Dfamily, Dgenera, Dspecies);$ where,

 B_A = Biological diversity, A = Surface area of river basin, km²; $Dfamily = (Ln F, family richness). (Ln A)^{-1}$

 $Dgenera = (Ln G, generic richness). (Ln A)^{-1}$

 $Dspecies = (Ln S, species richness). (Ln A)^{-1};$

N = Number of species and S = Surface area of river basin, km^2 .

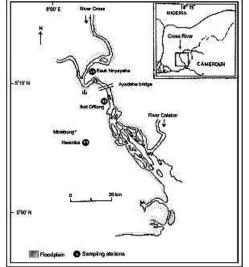


Figure-1 Map of the lower reaches of the Cross River showing sampling stations and flood plains

Results and Discussion

Species composition, diversity and ecological significance: Table-1 provides a broad overview of the ecological indices and ichthyofaunal composition of the lower Cross River system which reveal a polydiverse ecosystem accommodating about 77 fish species, 52 genera, 29 families and 9 orders of both fresh and euryhaline (marine intrusive) species. Earlier investigations estimated 37, 45, 45 and 166 species^{6,17,15,18}, respectively, and 23 species in 18 families¹⁹. The observed differences may be attributed to the investigation periods $(1857 \text{ and } 1992)^{18}$, the number of researchers, museum (preserved) specimens used and the length of the Cross River system/floodplain sampled. Other reasons include influenced of rainfall^{5,6,20-23}, volume of river discharge and surface area of river basin^{15,24}, hydrographic heterogeneity¹⁵, gradual and abrupt changes in physical parameters²⁵, river zonation²⁶ and river continuum²⁷. Current information adds to the baseline information needed in measuring future changes in species biomass and number.

Table-1 also indicates that of the three sampling stations, S₁ recorded the maximum RFD (38.51 %) in fish species biodiversity and condition factor (K = 9.24). The higher the RFD, the greater the resemblance of the habitat to overall taxa composition of LCR. The preference of S_1 may be due to i. higher plankton richness; ii. fairly stable and favourable hydrographic conditions for fish survival and growth; iii. its location around a meander of the LCR: Meanders are known to produce a succession of habitats of varying depths and bottom types encouraging the development of distinct groups adapted to such conditions; and iv. more fishes from the marine environment navigate upstream up to S_1 than the other stations. Some characteristic species found only in S₁ and not elsewhere include Micralestes humilus, Citharinus lates, Petrocephalus bovei, Heterotis niloticus, Chromidotilapia batesii, Synodontis nigrita, Bothygobius soporator, Mugil cephalus and Cynoglosus senegalensis. The lower species mix at S₃, may be due to the slow tidal influence coupled with salt ingression, which poses a challenge to the survival of purely freshwater species.

The species composition in table-2 indicates a total of 5211 fish specimens were sampled - 4620 (88.66%) being freshwater species and 591 (11.34%) - euryhaline fishes. In terms of number the Siluriformes (Bagridae, Bothidae, Clariidae, Malapteruridae, Mochokidae and Schilbeidae) occurred most in number, 59.52%; followed by the Perciformes (Anabantidae, Channidae, Cichlidae and Nandidae), 19.62% and then the Osteoglossiformes (Mormyridae, Notopteridae, Osteoglossidae and Pantodontidae), 5.58%. The least occurring species was of the Polypteriformes (Polypteridae), 1.46%. Of the three euryhaline fish orders, the Perciformes, 95.76%> Pleuronectiformes (Cynoglossidae), 2.55%; while the Clupeiformes (Clupeidae), 1.70%, were the least occurring order. Cichlidae was the fish taxa of high biodiversity significance and richness contributing 13 species (18.0%) with 11, 9 and 7 species spread across sampling stations 1 to 3, respectively; followed by Mormyridae - 9 species (11.7%) and Bagridae - 6 species (7.8%). The Cross River/floodplains also show richer fish diversity when compared to other rivers as in table-3. The main river channel and floodplains accommodate about twice the number of fish species expected using Daget and Ilits'22 formula. The high species richness and heterogeneity observed in this study area confirms the contributions of floodplains to river fisheries and productivity²⁸. It's link to the Atlantic Ocean, affords it the presence of some marine intrusive (euryhaline) species. Other African rivers also contributed species to the CR viz-a-viz Marcusenius mento (Guinean river basin), Heterotis niloticus, Brycinus nurse, Citharinus latus and Oreochromis niloticus (Nilo-Sudanian river basin), and Pantodon bucholzi and Clarias buthupogon (Zairean faunae). These introductions probably result from ancient hydrographic linkages and inter-connections. The absence of Heterotis niloticus in the main channel of the LCR had earlier been reported¹¹ but its occurrence in this study may be due to improved sampling technique, suitability of floodplain habitat or one of ecological significance - as a monospecific fish.

Number of Taxa/		Sampling stations		
Diversity Indices	Esuk Nnyanyaha, S ₁	Ikot Offiong, S ₂	Nwaniba, S ₃	Total
No. of Orders	8	7	8	9
No. of Families	26	21	22	29
No. of Genera	44	36	35	52
No. of Species	64	51	49	77
Species diversity, H	0.3199	4.6393	2.2960	1.0095
Species evenness, J	0.0769	1.1799	0.5840	0.4595
Species similarity, D	0.8796	0.9250	0.7940	0.6756
Margalef index, d	18.5616	15.807	15.4515	20.59
Relative Diversity, RFD	38.51	31.03	30.46	100
No. of fish sampled	2478	1456	1278	5212

 Table-1

 Summary of species taxa and diversity in the Lower Cross River floodplain, Nigeria

Table-2 Occurrence, mean total length, weight and condition factor of fish communities in sampling stations in the Lower Cross River, Nigeria

							Sampling						
	Ondon/Family/Spacioc]	Esuk Nnya	nyaha (S =	64)			ng(S = 51)			Nwanib	a (S = 49)	
	Order/Family/Species	Ν	MTL,cm		K	N	MTL, cm	MTW, g	K	Ν	MTL, cm	MTW, g	K
				F	resh Wa	iter Speci	ies						
	Characiformes	-	-	-	-	-	-	-	-	-	-	-	-
	Characidae	1	-	-	-	-	-	-	-	-	-	-	-
1	<i>Brycinus nurse</i> Ruppell	23	9.40	8.40	1.01	28	9.45	13.35	1.58	24	10.00	8.45	0.85
2	Brycinus Longipinnis Gunther	31	9.10	8.40	1.01	43	8.10	9.90	1.86	18	9.25	6.90	0.87
3	Brycinus macrolepidotus Valenciennes	8	6.20	3.50	1.47	-	-	-	-	5	11.55	13.50	0.88
4	Micralestes Humilis Boulenger	23	9.80	16.85	1.79	-	-	-	-	-	-	-	-
	Citharinidae	I	-	-	-	-	-	-	-	-	-	-	-
5	<i>Citharinus latus</i> Muller & Troschel	1	24.60	42.50	0.29	-	-	-	-	-	-	-	-
	Dischodontidae	-	-	-	-	-	-	-	-	-	-	-	-
6	Ichthyborus monodi Pellegrin	2	17.60	23.50	0.43	8	18.80	27.70	0.42	1	18.10	15.00	0.25
	Hepsetidae	-	-	-	-	-	-	-	-	-	-	-	-
7	Hepsetus odoe Bloch	6	22.25	86.45	0.78	3	18.70	53.90	0.82	4	18.45	47.00	0.75
	Cypriniformes	-	-	-	-	-	-	-	-	-	-	-	-
	Cyprinidae	-	-	-	-	-	-	-	-	-	-	-	-
8	Barbus callipterus Boulenger	98	6.30	3.70	2.68	70	7.70	6.85	1.5	20	5.00	2.40	1.92
9	Labeo batesi Boulenger	2	11.85	22.25	1.33	10	11.15	21.95	1.58	-	-	-	-
10	<i>Labeo coubie</i> Ruppell	5	7.25	6.25	1.64	3	8.85	13.65	1.97	-	-	-	-
	Cyprinodontiformes	-	-	-	-	-	-	-	-	-	-	-	-
	Aplocheilidae	-	-	-	-	-	-	-	-	-	-	-	-
11	Aphyosemion bivittatum Lonnberg	-	-	-	-	-	-	-	-	9	4.75	2.45	2.29

12	<i>Epiplatys sexfasciatus</i> Gill	21	4.45	0.85	0.96	38	5.05	2.45	1.90	25	5.10	2.20	1.66
13	<i>Epiplatys bifasciatus</i> Steindachner	11	2.80	0.55	2.51	11	2.25	1.15	10.10	44	3.45	1.30	3.17
14	<i>Epiplatys grahami</i> Boulenger	-	-	-	-	-	-	-	-	2	6.15	2.65	1.10
	Osteoglossiformes	-	-	-	-	_	-	-	-	-	-	-	-
	Mormyridae	-	_	-	_	_	-	_	_	-	_	-	_
	Brienomyrus brachyistius	_											
15	Gill	90	8.75	6.20	0.93	41	9.65	9.75	1.08	26	10.58	10.18	0.80
16	Gnathonemus petersii Gunther	4	22.00	65.15	0.61	10	20.70	54.55	0.62	6	21.25	61.65	0.64
17	Isichthys henryi Gill	11	7.85	1.90	0.39	15	8.00	2.75	0.54	6	12.10	6.90	0.39
18	Mormyrops deliciosus Leach	11	16.60	39.90	0.87	12	9.05	7.75	1.05	-	-	-	-
19	<i>Mormyrus rume</i> Valenciennes	12	2795	168.65	0.77	8	21.70	50.50	0.49	-	-	-	-
20	Petrocephalus bovei Valenciennes	64	9.65	6.50	0.72	-	-	-	-	-	-	-	-
21	Petrocephalus ansorgii Boulenger	11	17.30	11.10	0.21	18	14.45	10.00	0.33	1	10.4	9.80	0.87
22	Pollimyrus adspersus Gunther	-	-	-	-	-	-	-	-	2	5.20	4.90	3.48
	Notopteridae	-	-	-	-	-	-	-	-	-	_	-	-
23	Papyrocranus afer Gunther	1	34.70	28.80	0.07		21.00	37.65	0.41	14	23.35	41.25	0.32
24	Xenomystus nigri Gunther	1	16.20	25.60	0.60	1	8.10	17.00	3.20	5	12.10	20.40	1.5
	Osteoglossidae	-	_	-	-	_	-	_	-	-	_	-	-
25	Heterotis niloticus Cuvier	59	50.65	3510.0	2.70	_	-	-	-	-	_	-	-
	Pantodontidae	-	-	-	-	-	-	-	-	-	-	-	-
	Pantodon buchholzi												
26	Peters	-	-	-	-	-	-	-	-	4	9.85	11.75	1.23
	Perciformes												
		-	-	-	-	-	-	-	-	-	-	-	-
	Anabantidae	-	-	-	-	-	-	-	-	-	-	-	-
27	Ctenopoma kingsleyae Gunther	13	10.20	7.50	0.71	15	10.10	22.55	2.19	4	9.45	12.75	1.46
28	Ctenopoma nebulosum Norris & Teugels	7	10.45	28.10	0.25	5	12.50	32.10	1.64	5	10.85	19.55	1.33
	Channidae												
29	Parachanna africana Steindachner	7	14.04	27.30	0.98	5	17.30	29.15	0.56	44	14.40	27.30	0.91
30	Parachanna obscura Gunther	-	-	-	-	3	10.80	11.35	0.90	11	15.65	20.00	0.52
	Cichlidae												
31	<i>Chromidotilapia batesii</i> Boulenger	51	14.75	36.30	1.13	-	-	-	-	-	-	-	-
32	Chromidotilapia guntheri Sauvage	43	64.75	62.15	0.02	46	15.80	37.90	0.96	40	13.25	34.90	1.50
33	Hemichromis bimaculatus Gill	6	5.80	2.00	1.03	-	-	-	-	-	-	-	-
34	<i>Hemichromis fasciatus</i> Peters	40	10.00	62.15	6.22	30	7.70	15.15	3.32	22	8.90	19.50	2.77
35	<i>Hemichromis guttatus</i> Gunther	11	6.70	3.00	0.00	7	6.70	805	2.68	-	-	-	-
								•			•		

		1	1	1			1	1	1		1		
36	Oreochromis niloticus L.	-	-	-	-	-	-	-	-	3	9.5	7.0	0.82
37	Pelvicachromis pulcher Boulenger	27	9.60	19.25	1.00	40	8.80	17.90	2.63	19	9.45	14.90	1.77
38	Sarotherodon galilaeus L.	58	17.10	203.70	4.03	30	12.00	55.00	3.18	-	-	-	-
39	S. melanotheron Ruppell	15	12.40	61.55	3.22	26	13.35	44.60	1.87	-	-	-	-
40	<i>Thysochromis ansorgii</i> Boulenger	18	7.85	7.00	1.45	10	7.80	10.35	2.18	28	9.00	12.45	1.71
41	<i>Tilapia. mariae</i> Boulenger	37	52.50	80.90	0.06	33	12.90	16.40	0.76	20	12.10	59.00	0.05
42	<i>Tilapia zilli</i> Gervais	49	9.70	30.70	3.36	62	9.80	12.70	1.35	4	8.65	9.45	1.46
	Nandidae	-	-	-	-	-	-	-	-	-	-	-	-
43	Polycentropsis abbreviata Boulenger	-	-	-	-	-	-	-	-	4	5.95	5.25	2.49
	Siluriformes	-	-	-	-	-	-	-	-	-	-	-	-
	Bagridae	-	-	-	-	-	-	-	-	-	-	-	-
44	<i>Chrysichthys aluuensis</i> Risch	35	23.00	251.50	2.07	18	27.55	89.20	0.43	-	-	-	-
45	Chrysichthys auratus Geoffroy-Saint-Hilaire	782	15.75	65.30	1.67	231	14.00	33.80	1.23	564	14.00	51.95	1.89
46	<i>C. nigrodigitatus</i> Lacepede	241	53.15	4124.0	2.75	190	51.90	2770.0	1.98	65	50.00	6450.0	5.16
47	Parauchenoglanis akiri Risch	19	8.30	9.30	1.63	-	-	-	-	26	10.35	10.65	0.95
48	Parauchenoglanis fasciatus Gras	-	-	-	-	20	10.10	11.00	1.07	18	9.90	9.25	0.95
49	Parauchenoglanis guttatus Lonnberg	-	-	-	-	-	-	-	-	11	10.95	10.85	0.83
	Clariidae	-	-	-	-	-	-	-	-	-	-	-	-
50	Clarias buthupogon Sauvage	3	15.05	23.80	0.09	7	14.55	19.0	0.62	-	-	-	-
51	Clarias gariepinus Burchell	36	34.35	589.70	1.45	18	18.50	47.0	0.74	6	19.65	44.90	0.59
52	Clarias macromystax Gunther	5	20.45	78.50	0.92	-	-	-	-	4	21.40	67.85	0.69
53	Heterobranchus longifilis Val.	-	-	-	-	-	-	-	-	1	26.00	152.0	0.86
	Bothidae	-	-	-	-	-	-	-	-	-	-	-	-
54	Citharichthys stampfilis Steindachner	15	12.85	0.70	7	14.5	19.0	0.62	-	-	-	-	-
	Malapteruridae	-	-	-	-	-	-	-	-	-	-	-	-
55	Malapterurus electricus Gmelin	32	13.70	53.10	2.07	40	13.90	32.50	1.21	60	14.40	77.75	2.60
	Mochokidae	-	-	-	-	-	-	-	-	-	-	-	-
56	Synodontis nigrita Cuvier &Val.	20	14.95	60.75	1.82	-	-	-	-	-	-	-	-
57	Synodontis schall Bloch & Schneider	11	20.25	157.60	1.92	15	21.65	105.15	1.04	-	-	-	-
	Schilbeidae	-	-	-	-	-	-	-	-	-	-	-	-
58	Schilbe intermedius Ruppell	-		-	-	10	15.35	36.45	1.01	3	14.7	26.50	0.83
59	Schilbe mystus L.	32	12.90	10.80	0.50	-	-	-	-	1	8.80	10.50	1.54
	Polypteriformes	-	-	-	-	-	-	-	-	-	-	-	-
	Polypteridae	-	-	-	-	-	-	-	-	-	-	-	-
60	<i>Erpetoichthys calabaricus</i> Smith	-	-	-	-	5	28.15	44.90	0.20	58	28.35	37.50	0.16

Ma	rine Intrusive (Estuarine)	Speci	es										
	Clupeiformes	-	-	-	-	-	-	-	-	-	-	-	-
	Clupeidae	-	-	-	-	-	-	-	-	-	-	-	-
61	<i>Odaxothrissa mento</i> Regan	3	11.80	14.00	0.85	-	-	-	-	-	-	-	
62	Pellonula leonensis Boulenger	3	5.25	1.90	1.31	-	-	-	-	4	5.75	1.85	0.97
	Perciformes	-	-	-	-	-	-	-	-	-	-	-	-
	Carangidae	-	-	-	-	-	-	-	-	-	-	-	-
63	Caranx hippos L.	30	9.85	24.50	2.50	22	7.75	13.00	2.79	10	7.30	12.30	3.94
64	<i>Trachinotus goreensis</i> Cuvier	26	9.90	16.60	1.72	21	9.40	12.50	1.51	-	-	-	-
65	<i>Trachinotus teraia</i> Cuvier	38	8.05	6.70	1.28	40	8.05	6.90	1.32	-	-	-	-
	Eleotridae	-	-	-	-	-	-	-	-	-	-	-	-
66	<i>Bostrychus africanus</i> Steindachner	-	-	-	-	-	-	-	-	2	11.35	13.80	2.94
67	Eleotris senegalensis Steindachner	17	12.75	34.65	0.19	9	11.50	28.40	1.87				
68	Eleotris vittata Dumeril	1	8.50	4.00	0.00	2	8.90	10.75	1.52	7	9.60	17.70	2.00
	Gobiidae												
69	Bothygobius soporator Cuvier &Val.	11	26.10	32.30	5.26	-	-	-	-	-	-	-	-
	Lutjanidae												
70	Lutjanus endecacanthus Bleeker	4	11.80	35.40	2.16	-	-	-	-	-	-	-	-
	Mugilidae												
71	<i>Liza falcipinnis</i> Valenciennes	72	25.95	51.00	0.29	53	18.4	40.95	0.66	6	11.75	15.65	0.01
72	<i>Liza grandisquamis</i> Valenciennes	87	25.95	52.82	0.30	60	12.4	32.15	1.69	5	11.45	8.50	0.57
73	Mugil cephalus L.	22	17.40	66.35	1.26	-	-	-	-	-	-	-	-
	Pomadasidae (=Haemulidae)	-	-	-	-	-	-	-	-	-	-	-	-
74	<i>Pomadasys jubelini</i> Cuvier	13	11.90	33.25	1.97	8	12.9	32.2	1.50	-	-	-	-
	Pleuronectiformes	-	-	-	-	-	-	-	-	-	-	-	-
	Cynoglossidae	-	-	-	-	-	-	-	-	-	-	-	-
75	Cynoglossus senegalensis Kaup	15	27.65	105.10	0.50	-	-	-		-	-	-	-
	Mean ± Std. Dev.		16.80 ± 12.33	167.25 ±668.22	3.53		13.56 ± 7.68	80.34 ± 84.72	3.22		12.79 ± 7.74	193.29 ±932.32	9.24
					-					•			

N = Number of fish specimen caught, S = Number of fish species caught, MTL = Mean total length, MTW = Mean weight of fish caught K = Mean condition factor

River	Surface Area,	Т	axa Number	Т	axa Diversit	Overall Diversity Index			
	Km ²	Families	Genera	Species	D _{families}	Dgenera	D _{species}	BA	N
Mono	22,000	18	35	59	0.289	0.356	0.408	1.053	61
Oueme	50,000	30	64	106	0.314	0.384	0.431	1.129	75
Ogun	22,370	28	60	91	0.333	0.409	0.450	1.192	61
Cross	70,000	41	97	166	0.333	0.410	0.458	1.201	81
LCRF	8,000	29	52	77	0.375	0.440	0.483	1.298	47

 Table-3

 Diversity and taxa – richness in relation to river basin area in some West African rivers

 B_A = Biological diversity of river basin¹⁵, N = Expected number of species¹⁶, LCRF = Lower Cross River Floodplains/this study

Table-4
Species composition of catches from the lower Cross River floodplain, Nigeria:
Pooled data from three sampling stations

S/N	Fish Species	N	a from three sam Wt (g)	% N	% Wt	Ave. Wt (g)	No. of fish Kg ⁻¹	IP
			Fresh water s	pecies			ł	
1.	Aphyosemion bivittatum	9	22.05	0.17	0.00	2.45	408.2	0.00
2.	Barbus callipterus	188	882.70	3.61	0.04	4.70	213.0	0.02
3.	Brienomyrus brachyistus	157	1222.43	3.01	0.06	7.79	128.4	0.02
4.	Brycinus macrolepidotus	13	95.50	0.25	0.00	7.35	136.1	0.00
5.	Brycinus nurse	75	769.80	1.44	0.04	10.26	97.4	0.01
6.	Brycinus longipinnis	92	810.40	1.82	0.04	8.81	113.5	0.01
7.	Chromidotilapia batesii	51	185.13	0.98	0.01	3.63	275.5	0.00
8.	Chromidotilapia guntheri	129	5811.85	2.48	0.27	45.05	22.2	0.07
9.	Chrysichthys nigrodigitatus	496	1939434.00	9.52	90.39	3910.15	0.3	86.68
10.	Chrysichthys aluuensis	53	10408.10	1.02	0.49	196.48	5.1	0.05
11.	Chrysichthys auratus	1577	88172.20	30.26	4.11	55.91	17.9	12.53
12.	Citharichthys stampfilis	46	720.00	0.88	0.03	15.65	63.9	0.00
13.	Citharinus latus	1	42.50	0.02	0.00	42.50	23.5	0.00
14.	Clarias gariepinus	60	22344.60	1.15	1.04	372.41	2.7	0.12
15.	Clarias buthupogon	10	204.40	0.19	0.01	20.44	48.9	0.00
16.	Clarias macromystax	9	663.90	0.17	0.03	73.77	13.6	0.00
17.	Ctenopoma kingsleyae	32	486.75	0.61	0.02	15.21	65.7	0.00
18.	Ctenopoma nebolusum	17	454.95	0.33	0.02	26.76	37.4	0.00
19.	Epiplatys bifasciatus	66	75.90	1.27	0.00	1.15	869.6	0.00
20.	Epiplatys grahami	2	5.30	0.04	0.00	2.65	377.4	0.00
21.	Epiplatys sexfasciatus	84	165.95	1.16	0.01	1.98	506.2	0.00
22.	Erpetoichthys calabaricus	63	2399.50	1.21	0.11	38.09	26.3	0.01
23.	Gnathonemus petersii	20	611.46	0.38	0.03	30.57	32.7	0.00
24.	Hemichromis bimaculatus	6	12.00	0.12	0.00	2.00	500.0	0.00
25.	Hemichromis fasciatus	92	1529.50	1.77	0.07	16.63	60.2	0.01
26.	Hemichromis guttatus	18	87.35	0.35	0.00	4.96	201.5	0.00
27.	Hepsetus odoe	13	868.40	0.25	0.04	66.80	15.0	0.00
28.	Heterobranchus longifilis	1	152.00	0.02	0.01	152.0	6.6	0.00
29.	Heterotis niloticus	59	3510.00	1.13	0.16	59.49	16.8	0.02
30.	Ichythyborus monodi	<u>11</u> 42	283.60	0.21	0.01	25.78	38.8	0.00
31.	Isichthys henryi	8	103.55	0.81	0.00	2.47	405.6	0.00
<u>32.</u> 33.	Labeo coubie Labeo batesi	12	72.20 263.60	0.15	0.00	9.03 21.97	<u>110.8</u> 45.5	0.00
		132	3465.70	2.53	0.01	26.26	38.1	0.00 0.04
<u>34.</u> 35.	Malapterurus electricus	132	455.35	0.27	0.10	32.53	30.7	0.04
<u> </u>	Marcusenius mento Micralestes humilus	23	387.55	0.27	0.02	16.85	59.4	0.00
<u> </u>	Mormyrops deliciosus	23	531.90	0.44	0.02	23.13	43.2	0.00
38.	Mormyrus rume	20	2427.80	0.38	0.03	121.39	8.2	0.00
<u>39.</u>	Oreochromis niloticus	3	21.00	0.06	0.00	7.0	142.9	0.00
40.	Pantodon bulcholzi	4	11.75	0.08	0.00	2.94	340.4	0.00
41.	Papyrocranus afer	18	719.25	0.35	0.00	39.96	25.0	0.00
42.	Parachanna obscura	14	254.05	0.27	0.01	18.15	55.1	0.00
43.	Parachanna africana	56	1538.05	1.07	0.07	27.45	36.4	0.00
44.	Parachenoglanis akiri	45	453.60	0.86	0.02	10.08	99.2	0.00
45.	Parachenoglanis fasciatus	38	386.50	0.73	0.02	10.00	98.3	0.00
46.	Parachenoglanis guttatus	11	119.35	0.21	0.02	10.17	92.2	0.00
47.	Pelvicachromis pulcher	86	1518.85	1.65	0.07	17.66	56.6	0.00
48.	Petrocephalus ansorgii	30	311.90	0.58	0.01	10.40	96.2	0.00
49.	Petrocephalus bovei	64	416.00	1.23	0.02	6.50	153.9	0.00
50.	Pollimyrus adspersus	2	9.80	0.04	0.00	4.90	204.1	0.00
51.	Polycentropsis abbreviata	4	21.00	0.08	0.00	5.25	190.5	0.00
52.	Sarotherodon galilaeus	88	13464.60	1.69	0.63	153.01	6.5	0.11
53.	Sarotherodon melanotheron	41	2081.85	0.77	0.10	50.78	19.7	0.01

					1			
54.	Schilbe intermedius	13	444.00	0.25	0.02	34.15	29.3	0.00
55.	Schilbe mystus	33	356.10	0.63	0.02	10.79	92.7	0.00
56.	Synodontis nigrita	20	1215.00	0.38	0.06	60.75	16.5	0.00
57.	Synodontis schall	26	3310.85	0.50	0.15	127.34	7.9	0.01
58.	Thysochromis ansorgii	50	578.10	1.07	0.03	10.32	96.9	0.00
59.	Tilapia mariae	90	4614.50	1.73	0.22	51.27	19.5	0.04
60.	Tilapia guineensis	32	949.50	0.61	0.04	29.67	33.7	0.00
61.	Tilapia zilli	115	2329.50	2.21	0.11	20.26	49.4	0.03
62.	Xenomystus nigri	7	149.60	0.13	0.01	21.37	46.8	0.00
		Mari	ne Intrusive (Est	uarine) Spo	ecies			
63.	Bathygobius soporator	11	355.30	0.21	0.02	32.30	31.0	0.00
64.	Bostrychus africanus	2	27.60	0.90	0.00	13.8	72.5	0.00
65.	Caranx hippos	62	144.00	0.06	0.05	18.45	54.2	0.01
66.	Cynoglossus senegalensis	15	1576.50	0.29	0.07	105.10	9.5	0.00
67.	Eleotris senegalensis	26	844.65	0.50	0.04	32.49	30.8	0.00
68.	Eleotris vittata	10	149.40	0.19	0.01	14.94	66.9	0.00
69.	Liza gradisquamis	152	6566.84	2.92	0.31	43.20	23.2	0.09
70.	Liza falcipinnis	131	5936.25	2.51	0.28	45.31	22.1	0.07
71.	Lutjanus endecacanthus	4	141.60	0.08	0.01	35.40	28.2	0.00
72.	Mugil cephalus	22	1459.70	0.42	0.07	66.35	15.1	0.00
73.	Odaxothrissa mento	3	42.00	0.06	0.00	14.00	71.4	0.00
74.	Pellonula leonensis	7	13.10	0.13	0.00	1.87	534.8	0.00
75.	Pomadasys jubelini	21	689.85	0.40	0.03	32.85	30.4	0.00
76.	Trichinotus teraia	78	530.60	1.19	0.03	6.80	147.0	0.01
77.	Trichinotus goreensis	47	694.10	0.13	0.03	14.77	67.7	0.00
	Σ	5211	2145588.06	100	100	411.74	2.43	100

N = number of fish caught Wt = weight of fish caught IP = index of preponderance

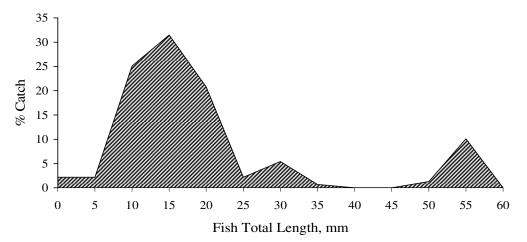


Figure-2 Length frequency of fish catches along the Lower Cross River Floodplain, Nigeria

Earlier reports^{5,18,22} indicate that at least 33 marine species (from 28 genera, 16 families and 8 orders) penetrate the fresh waters of the Lower Cross River system. In this study, the marine intrusive species constitute about 20% of species, eight families-28% (Clupeidae, Carangidae, Eleotridae, Gobiidae, Lutjanidae, Mugilidae, Haemulidae and Cynoglossidae) and three orders-33% (Clupeiformes, Perciformes and Pleuronectiformes). Brackishwater species like *Mugil cephalus, Pomadasys jubelini* and *Caranx hippos* co-occurring in the freshwater zone (like their marine counterparts), probably

entered with the tidal waves, which are still observable as far as S_1 . Some of these fishes were probably searching for food, spawning sites to lay eggs and/or nursery grounds for growth, and have become adapted. The longitudinal distribution of *C. nigrodigitatus* stretching from the mouth of the river inwards to the upper reaches suggests its ability to tolerate wider range of salinity. Therefore, it is a good candidate for brackish water culture along with *Mugil cephalus, Pomadasys jubelini* and *Caranx hippos*.

The indices of preponderance in table-4 indicate the most important fish family is Bagridae (IP=99.26; Siluriformes) occurring in all the sampling stations: S_1 (IP=54.88), S_2 (IP=98.52) and S_3 (IP=98.15). The top five families in terms of numbers are the Bagridae, 42.6% (IP=99.26), especially Chysichthys auratus contributing 30.26% and C. nigrodigitatus - 9.52%; Cichlidae, 15.49% (IP=0.28) Chromidotilapia guntheri - 2.48% and *Tilapia zilli* - 2.21%; Mormyridae, 7.14% especially Brienomyrus brachyistus - 3.01%); Mugilidae, 5.85% especially Liza falcipinnis - 2.51% and Cyprinidae, 3.99%, especially Barbus callipterus - 3.61%. In terms of gross weight of fish caught, the order is Bagridae, 95% > Cichlidae, 1.55% > Clariidae, 1.09%. In terms of size (i.e., number of individuals per kg), the bagrid catfish, *Chysichthys nigrodigitatus* (0.3) surpassed all other species (> Clarias gariepinus-2.7 > C. aluuensis-5.1).

At the species level in table-4, C. nigrodigitatus and C. auratus are the most significant. Other important species include Heterotis niloticus and Clarias gariepinus. Chrysichthys remains the main fishery in the lower Cross River as observed in this study and others^{5,23,28} though we obtained a higher average number of 0.3 fish (C. nigrodigitatus) per kg compared to an earlier value of 0.4⁵. Populations were generally bigger upstream than their counterparts downstream. The mean sizes of individual species increase with increase in number of species upstream, from the transitional zone at the river mouth, S_3 to S_1 $(S_3 = 49, S_2 = 54 \text{ and } S_1 = 64 \text{ species, with mean TL} = 12.79,$ 13.56 and 16.08cm, respectively). Specimens of the dominant species such as Chrysichthys auratus showed mean total lengths of 15.75, 14.00 and 14.00cm; C. nigrodigitatus - 53.15, 51.90 and 50.00cm and Chromidotilapia guntheri - 64.75, 15.80 and 13.25cm in S_1 to S_3 , respectively. The survey indicates that the smaller-sized C. auratus with average weight of 55.91kg were caught in higher number (30.26%) than the larger-sized C. nigrodigitatus (3910.15g; 9.52%). The size range in figure-2 suggests that fishing gears with narrow selectivity were employed hence most fish sampled fall within 5-20cm, the juvenile class range. The species of fish inhabiting floodplain rivers usually cover a wide range of sizes which normally span three orders (i.e., 1.5cm to 1500cm). It also suggests that the floodplain is highly utilized by juvenile of commercially important fishes from the sea possibly as nursery and feeding grounds. However, the fishery is still vulnerable to (growth and recruitment) over-fishing (particularly during the spawning season) due to the persisting indiscriminate interception, massive capture in very large numbers and complete removal of young and gravid C. nigrodigitatus catfish during their upstream migration with the rise in river level and the inundation of the floodplains, particularly in May – June²². Such over-fishing decreases the resilience of the fish fauna making it more susceptible to environmental fluctuations, climate change and anthropogenic perturbations. Gears that exclude juveniles and fingerlings should therefore be encouraged.

Conclusion

The Cross River floodplain has been shown to be a nursery and feeding ground for diverse species, including monospecific and rare species of fish hence gears that exclude juveniles and fingerlings should therefore be encouraged and future development along the floodplain should be subjected to environmental scrutiny to maintain the environmental health and integrity of the ecosystem. Species diversity studies should be a continuous work to determine the health of the fishery and enhance conservation measures.

References

- Hillary A., Kokkonen M. and Max L., eds., Proceedings of the World Heritage Marine Biodiversity Workshop, Hanoi, Viet Nam, February 25 – March 1, 2002, UNESCO World Heritage Centre, Paris, 92 (2003)
- 2. Ita E.O., Inland fishery resources of Nigeria. CIFA Occasional Paper No. 20, FAO, Rome, 120 (1993)
- Obasohan E.E. and Oronsanye J.A.O., Biodiversity and sustainability of freshwater fishes in Nigeria, In: Ansa, E. J., Anyanwu P.E., Ayonoadu B.W., Erondu E.S., Beekae S.N., eds. Proceedings of the 20th Annual conference of the Fisheries Society of Nigeria, Port Harcourt, 14 – 18 Nov. 2005, 230-237 (2006)
- 4. Federal Ministry of Environment, FMOE, *Fourth National Biodiversity Report*, Federal Ministry of Environment, Abuja, 79 (2010)
- 5. MosesB.S., The influence of flood regime on fish catch and fish communities of the Cross River floodplain ecosystem, Nigeria, *Environmental Biology of Fishes*, 18, 51-65 (1987)
- 6. Moses B.S., The Cross River: its ecology and fisheries. In: Proceedings of the International Conference on Kainji Lake and River Basins Development in Africa, Kainji Lake Research Institute (K.L.R.I), New Bussa, 366-371 (1979)
- 7. Ajayi T.O., Notes on the identification of marine fishes found in the Nigeria coastal waters. Nigerian Institute of Oceanographic and Marine Research (NIOMR) Occasional Paper No. 25, Lagos, 70 (1979)
- 8. Edwards A.J., Gill C. and Abohweyere P.O., A revision of Irvine's Marine Fishes of Tropical West Africa, Darwin Initiative Report 2. Ref: 162/7/451, 157 (2001)
- 9. Watson J.D. and Balon E.K., Ecomorphological analysis of fish taxocene of rainforest streams of Northern Borneo, *Journal of Fish Biology* **25**, 371-384 (**1984**)
- **10.** Watson J.D. and Balon E.K., Structure and production of fish communities in tropical rainforest streams of Northern Borneo, *Canadian Journal of Zoology*, **62**, 927-940 (**1984**)

- Shanon C.E. and Weaver W., The Mathematical Theory of Communication. University of Illinois Press, Urbana, 117 (1963)
- 12. Margalef R., *Perspectives in ecological theory*, University of Chicago Press, Chicago, 111 (**1968**)
- **13.** Pielou E.C., An introduction to Mathematical Ecology, John Wiley and Sons, New York, 101-111 (**1969**)
- 14. Mandal R.N. and Naskar K.R., Diversity and classification of Indian mangroves: a review, *Tropical Ecology*, **49(2)**, 131-146 (2008)
- **15.** Hugueny B., West African Rivers as biogeographic islands: species richness of fish communities, *Oceanologia*, **79**, 236-243 (**1989**)
- Daget J. and Iltis A., Les poissons de Cóte d'Ivoire (eaux douces et eaux saumâtres), Mém Inst Fr Afr Noire, 74, 1-385 (1965)
- **17.** Reid J.C., Preliminary observation of some smaller fish of the freshwater of Calabar area, In: Proceedings of the 2nd annual conference of the Fisheries Society of Nigeria (FISON), Calabar, 25-25 June 1982, 244-252 (**1982**)
- Teugels G.G., Reid G. Mc R. and King R.P., Fishes of the Cross River Basin (Cameroun - Nigeria), Taxonomy, zoogeography, ecology and conservation, *Annale Science Zoologique* 266, 1-132 (1992)
- **19.** Lowenberge U. and Kunzel T., Investigations on the trawl fishery in the Cross River estuary, Nigeria, *Journal of Applied Ichthyology*, **7**(1), 44-53 (**2007**)
- **20.** Fagade S.O. and Olaniyan C.I.O., The food and feeding interrelationship of fishes in the Lagos lagoon, *Journal of Fish Biology*, **5**, 205-225 (**1973**)
- **21.** Moses B.S., The status of artisanal fisheries and fish resources conservation in South-eastern Nigeria,

Transactions of Nigeria Society of Biological Conservation, 1, 43-60 (1990)

- 22. Moses B.S., The hydroregime on catch, abundance and recruitment of the catfish, *Chrysichthys nigrodigitatus* (Bagridae) and bonga, *Ethmalosa fimbriata* (Clupeidae) of South Eastern Nigeria's inshore waters, *Environmental Biology of Fishes*, **61**, 99-109 (**2001**)
- **23.** Udoh E.E., Studies on the occurrences, distribution, growth, mortality and potential yield of catfish of the genus *Chrysichthys* in the Cross River system, Nigeria, M.Sc. Thesis, University of Uyo, Uyo, 371-384 (**1994**)
- 24. Livingstone D.A., Rowland M. and Bailey P.E., On the size of African riverine fish faunas, *Am Zoo1.*, 22, 361-369 (1982)
- Ramirez A. and Pringle C.M., Spatial and temporal patterns of invertebrate drift in streams draining a neotropical landscape, *Freshwater Biology*, 46, 47-62 (2001)
- **26.** Covich A.P., Geographical and historical comparisons of neotropical streams: biotic diversity and detrital processing in highly variable habitats, *Journal of North American Benthological Society*, **7**, 361-386 (**1988**)
- 27. Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E., The river continuum concept, *Canadian Journal of Fisheries and Aquatic Sciences*, **37**,130-137 (**1980**)
- **28.** Moses B.S., Udoidiong O.M. and Okon A.O., A statistical survey of the artisanal fisheries of South-eastern Nigeria and the influence of hydroclimatic factors on catch and resource productivity, *Fisheries Research*, **52**,267-278 (**2002**)