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Abstract 

Three of the most commonly used sigmoidal growth curves from Richard family which are applied in plant growth simulation 

modelling are the Logistic, Richard and Gompertz curves. These mathematical functions are suitable to study the sigmoidal 

pattern of determinate growth. Logistic and Gompertz models have 3 parameters while Richard function has one additional 

parameter to describe growth kinetics. Both Richard and Gompertz function are flexible enough in describing asymmetrical 

sigmoidal patterns while logistic function describes symmetrical sigmoidal growth and because of this, all discussed 

modelscan be used to predict leaf growth dynamics. Leaf area data was collected from one semi-deciduous species (Shorea 

robusta Gaertn. f.; Family Dipterocarpaceae) and one deciduous species (Adina cordifolia Hook. f. ex. Brandis; Family 

Rubiaceae)growing naturally in terai region at the foot hills of central Kumaon Himalaya to explain the fitting performance 

of some nonlinear asymptotic models to leaf data. Leaf area expansion was considered a function of time, y=f(x). Growth 

curves in explaining leaf area dynamics provides insight on the following logical questions which are: length of lag phase, 

maximum growth rate, when it occurs, the time at which 50% of leaf area growth is completed and finally the upper limit 

(value) of leaf area growth. For model fitting performance four comparison criteria were used. Coefficient of Determination 

(R
2
), Sum of Squared Error (SSE), Root Mean Square Error (RMSE) and Mean Relative Error (MRE). All the three models 

fitted well to leaf area data from two species. In both the data sets, Richard curve behaved much more like a logistic curve (δ 

close to 1), than Gompertz curve. Results indicated that nonlinear sigmoidal fitting is much reliable in explaining leaf growth 

variations over time as compared to other model forms. 

 

Keywords: Sigmoidal growth curves, Richard family, Logistic model, Richard model, Gompertz model, nonlinear, 

asymptotic. 
 

Introduction 

In plant developmental biology and functional ecology, growth 

curves are used to model growth of individual plant or plant part 

over time. Growth characteristics (dependent variables) can be 

measured as increment in biomass, basal area, volume, 

diameter, height, leaf area etc. Growth curves can have various 

growth patterns. In nature plant species have to deal with 

limited environmental resources and high competition and thus 

there is always an upper limit of growth for them which 

proceeds sigmoidally and asymptotically. In the initial phase, 

growth is rather slow but accelerates afterwards and decreases 

in the final phase, approaching the upper asymptote (leveling 

off). This gives a typical sigmoidal pattern of growth whose 

growth rate is a bell-shaped curve
1
. However, a cumulative 

growth pattern represents a characteristic S-shaped curve. All 

the equations used in the models denotes the cumulative 

distribution function. In statistical theory, both S, and bell- 

shaped growth curves represent a continuous probability 

distribution. The process of tree/organ growth can be described 

using this type of growth curves. 

 

Leaf is the most sensitive organ, which reacts instinctively to 

environmental conditions and affects the growth and 

development of other organs aswell
2
 and so accurate prediction 

of leaf area is necessary for precise forecasting of individual 

plant growth and its organs through dynamic simulation models. 

Leaf area production in trees is driven by duration of light 

interception, processing, energytransfer
3
, rate of biomass 

accumulation, transpiration and photosynthesis. Leaf area and 

leaf dry matter which is combined called as leaf size influences 

a variety of complex processes in plants. Therefore, variations 

in individual leaf size and its trade-off with total leaf number 

has important implications for understanding the adjustments 

made by plants to environmental changes
4
. Neighboring plants 

generally compete for limiting resources in order to grow and 

reproduce. Some resources example sun light or water could be 

monopolized by huge plants and this could lead to asymmetric 

competition where a plant which is twice as large, grows more 

than twice as fast. Thus, in order to cover the entire spectrum of 

different growth phases in plants under limiting conditions, 

sigmoidal growth curves are used.  
 

Ample studies are available in which growth of population/ 

organisms is described through S- shaped curves. Since the past 

few decades, there is a growing agreement among plant 

biologists that traditional approaches such as linear and 

exponential functions are not fit to describe plant growth. 

Moreover, in the current scenario gradual availability of large 

number of statistical software’s have made quite easy for 
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researchers to implement nonlinear models
5
. Thus, working on 

such dynamic and flexible models are now within the reach of 

ecologists and plant biologists which was not there earlier. 

People in the scientific fraternity across the globe have now 

started fitting sigmoidal functions to almost everything from 

seed germination, plant growth, growth of mammal, fish, bird 

and to even bacteria and tumor growth and literature keeps on 

increasing. Moreover, complex mechanisms as plant-soil 

interaction; plant-host resistance; plant microbial/environmental 

interactions and plant defense management system can also be 

explored using these functions. 
 

 As these models have been applied in various fields in many 

different notions and parameterizations
6
 which makes it a bit 

difficult to choose the correct model for growth analysis when it 

comes to plant growth modelling. Hence, in order to fit a 

dynamic data to such models, it is extremely important that 

dependent and independent variables along with model 

parameters should be self-explanatory. Thus, it is necessary that 

before applying these models to experimental data, they should 

be reviewed and parameterized/ re- parameterized accordingly. 
 

The flexible dynamics curve used to model leaf area increment 

over time in this case revealed the entire process of leaf area 

growth: i. How much time is needed to initiate the process of 

leaf area synthesis, i.e. how extended will be the lag time? Or at 

what time the leaf area growth will accelerate? Ii. What will be 

the maximum growth rate (slope of inflection)? iii. when this 

will occur (time of inflection) ? iv. At what time will 50% of 

leaf area will be synthesized ?, v. What shall be the final leaf 

area growth value (i.e. upper asymptote value also called as 

carrying capacity). 
 

Solver, which is an add- in function of Microsoft Excel was 

used for nonlinear curve fitting of leaf data. Several algorithms 

are used in nonlinear regression including the Marquardt- 

Levenberg, Nelder- Mead and Gauss- Newton methods
7
. Solver, 

which is designed on the powerful and reliable generalized 

reduced gradient (GRG) method, can be utilized as an easy 

iteration method to tackle nonlinear and asymptotic models. A 

detailed discussion about Solver function can be found in 

literature
8
. Like other algorithms it has similar properties which 

requires to put initial parameter values and use these values to 

get a better estimation of the parameters used in iterative 

process. In this context, the purpose of study was to present 

growth curves from the Richards family, with particular regard 

to those forms that are useful for modeling plant/organ growth. 

The proposed models are applied to study the dynamics of leaf 

growth in two tree species namely Shorea robusta Gaertn. f. 

(Sal) and Adina cordifolia Hook. f. ex. Brandis (Haldu) growing 

naturally in terai region of central Kumaon Himalaya.   
 

Material and methods 

Site details and climatic conditions: The study was conducted 

in Lalkuan forest (29º 04 N, 079º 30 E and 230.2m amsl) which 

comes under Nainital Forest Division. The area falls under terai 

region which is at the foothills of central Kumaon Himalaya. 

Soil is alluvial which is highly fertile in nature. The region is 

extremely moist and thickly forested.  

 

Terai region is water logged alluvial plain with gentle south- 

east slope, deep and fertile moist loamy soil which is free from 

boulders and gravels
9
. Area has a mixed vegetation and is 

dominated by Sal and other associated species including Haldu. 

The region is full of floral diversity and represents tropical and 

sub- tropical forest type. 

 

Mean maximum temperature is 22.5ºC (January) and 45.3ºC 

(June) and mean minimum temperature is 9.5ºC (January) and 

33ºC (June) respectively. Average rainfall in winter is 32-33.1 

mm, average rainfall in summer is 84.6-87.0mm and average 

annual rainfall during warm- rainy season is 477.2-527.8mm. 

Site enjoys typical monsoon climate with rich humidity during 

July to mid September. Nearly 70% of the annual rainfall is 

monsoonal during July- September.  

 

Experimental Design: Important leaf transition phases (leaf bud 

burst/leaf flush, leaf area expansion and leaf maturation) were 

captured using 12 data points. To observe leaf phenology six (6) 

average sized matured trees (CBH > 97.77cm) were selected 

within 666.7m
2
 circular permanent plot of radius 14.56m

10
. Leaf 

area measurement was undertaken after interval of seven (7) 

days each. Total Six (6) random trees of Shorearobusta and 

Adina cordifolia were permanently marked in Lalkuan forest (3 

from each specie; n=3) and tagged them as SR1, SR2, SR3, AC1, 

AC2, AC3. Sample of three trees each were taken to generate the 

mean leaf area data (Table-1). Twenty (20) vegetative shoot 

buds per tree were marked in spring season. For Shorearobusta, 

tagging of shoot buds was completed in the month of February, 

2020 leaf bud initiation started from mid of March and leaf area 

measurement began from April 08 and ended in June 24, 2020 

(12 data points). For Adina cordifolia, shoot bud tagging was 

completed by mid-April, leaf flush initiated by May/June and 

leaf area measurement commenced from July 01 and ended in 

September 27, 2020. On an average, single marked bud gave 

rise to approximately 10-20 shoots and per shoot about 15-25 

leaves. Mean leaves were calculated as total number of leaves 

over total number of shoots. Leaves from each of the trees were 

collected randomly on each of the sampling date (at weekly 

intervals from bud break to full leaf expansion) from the marked 

twigs. All collected leaves from individual species were 

sketched on graph paper to measure the leaf area. 

 

Nonlinear asymptotic growth models: Eventually, all three 

asymptotic nonlinear models were tested and compared to 

predict the fitted-y. For model comparison, four criteria were 

used namely: Coefficient of Determination (R
2
), Sum of 

Squared Error (SSE) which accounted for the unexplained 

variations in the model Root Mean Square Error (RMSE) and 

Mean Relative Error (MRE). All statistical analysis was done in 

Microsoft Excel, 2019. Nonlinear curve fitting was performed in 

“Solver” which is an inbuilt add-in function in Excel, 2019 
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itself. Solver assists in fitting nonlinear regression functions via 

an iterative algorithm
11

 which minimizes the sum of squared 

error (SSE) between experimental and predicted data. Thus, 

model obtains maximum likelihood when the SSE is minimized. 

Hundred (100) iterations each were performed for every model 

with maximum time of hundred (100) seconds at 0.000001 

precision level. 

 

Following mathematical functions were used to describe leaf 

growth: 

Logistic Model
12

:  ( )  
 

[     {  (    )}]
   

              

Re- parameterisation
13

 to calculate lag phase (Tƛ) 
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*Abbreviations: Y(t)= expected cumulative leaf area growth at 

time “t”; α= upper asymptote (theoretical maximum for Y(t)); 

k= growth rate coefficient which is a shape parameter; Ti= time 

at an inflection i.e. time at which maximum growth rate is 

achieved; Tƛ = lag time. 
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*Abbreviations: R
2
= Coefficient of Determination; SSE = Sum 

of Squared Error; SST= Sum Squared Total;  ̂= predicted/ fitted 

Y value; Y= experimental/observed values;   = observed mean; 

n= number of observations or data points;     = maximum 

experimental value;     = minimum experimental value; 

RMSE = Root Mean Square Error; MRE= Mean Relative Error.  

RGRmax (ƞi) and AGRmax (µi) for logistic model was calculated 

as:    
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, for Richard model,    
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, and for Gompertz model,    
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respectively. 

 

Asymptotic standard error needed to be calculated for model 

validation for which more complex and time-consuming 

computer programs were required
17

. To avoid this, an 

alternative approach was adopted in this investigation where the 

standard error of the data around the prediction curve was 

calculated by dividing sum of squared error (SSE) by degree of 

freedom (DOF) to get the variance of experimental data (Y). 

The square root of variance gave the standard error of the Y 

(Residuals) which was further used to calculate the Confidence 

Intervals (CI).  

 

The CI is a sign of probability that the true experimental data lie 

within the range specified by the probability formula
18

. It 

commonly uses 95% CI, which means that there is a 95% 

probability that the experimental value lies within the interval. 

Lower CI values indicate high precision or accuracy level of 

data. In order to calculate CI, the critical-t value was calculated 

which depended upon probability and its associated DOF
19

.  

 

Microsoft Excel, 2019 has a built-in function (TINV) which 

allowed calculations of the critical t-value, thus bypassing the 

need to look up t-value tables. Once the critical t-value was 

obtained, it was multiplied by standard error of the residuals to 

get the CI. The lower the CI, the better the model accuracy. 

DOF for each model was calculated as number of data points 

(Y) minus number of parameters in function.  

 

Results and discussion 

Leaf area prediction using three nonlinear mathematical models 

has been described for Sal and Haldu trees growing naturally in 

Lalkuan Forest in Uttrakhand. Measured leaf area is shown in 

Table-1. Leaf area ranged from 170.868cm
2
 in Shorearobusta to 

221.032cm
2
 in Adina cordifolia at the final harvest. Growth 

pattern of leaf area resembled an S-shaped curve. Parameters for 

every model of leaf growth has been depicted in Table-2.  

 

The R
2
, SSE, RMSE and MRE were evaluated for every model 

and all models reasonably fit the leaf area data for two species. 

Confidence Intervals (CI) were also calculated for each model 

which further assisted in model validation. In Shorearobusta, 

the best fit model based on comparison criteria was Logistic> 

Richard>Gompertz while in Adina cordifolia it was Gompertz> 

Logistic>Richard. In Adina cordifolia data, the Mean Relative 

Error (MRE) displayed a negative value which was ignored 

(minus sign was ignored). This happens, when the fitted or 

predicted values is greater than the experimental or actual 

values. 
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Initial investigations revealed that maximum leaf area in 

Shorearobusta was formed between 6
th

 and 7
th

 harvest (53.134 

cm
2
) and in Adina cordifolia was synthesized between 4

th
 and 

5
th

 harvest (64.244cm
2
). Analyzing the model parameters for 

both data sets it can be said that in Shorearobusta lag time (Tƛ) 

for Logistic and Richard’ function was nearly mid of 3
rd

 harvest 

and for Gompertz function it is approximately third harvest 

which means that the growth rate was slow till Tƛ and after that 

it accelerated, reached its maximum value at Ti, afterwards the 

growth rate gradually decreased and reached nearly zero when 

experimental y value reached upper asymptote, α (Table-2). 

This gives a perfectly bell-shaped growth rate curve. Adina 

cordifolia leaf area data suggested that lag time for Logistic 

function and Richard’s function is nearly 2
nd

 harvest while for 

Gompertz function it is 1st harvest. Time at inflection (Ti) i.e. 

time at which growth rate reaches its maximum value also 

varied between tree species and models as well. Growth rate in 

Gompertz curve peaked earlier (α/e) than logistic and Richard 

curve. Richard curve in both the data sets behaved much like a 

logistic curve (δ=1) than Gompertz curve. For Shorearobusta 

data, Confidence Interval (CI) of Logistic, Richard and 

Gompertz curve came out to be 18.527, 20.032 and 21.328 

respectively while for that of Adina cordifolia the values were 

calculated as 36.874, 39.869 and 31.996 respectively. 

 

Comparison: Comparing the three growth functions are fellows  

Logistic function: Here, time at which the leaf area growth 

reached maximum rate of Ti was provided directly in the 

function. Model described that Ti is a location parameter which 

horizontally shifted the growth curve without changing its 

shape. The logistic function relates with a cumulative normal 

distribution which is symmetrical about the point of inflection 

(Ti) whose coordinates are (Ti, α/2) which means that Ti 

indicated the time at which 50% of leaf area was synthesized. 

Model showed that growth rate coefficient is always a positive 

value and larger value suggested a speedy rise from zero to 

upper asymptote (α). A new parameterization  was used in the 

logistic model in which the inflection time (Ti) was replaced by 

lag-time (Tƛ) to understand the leaf-are a dynamics at an early 

stage of growth. Lag time described low period of leaf growth 

(lag period) after which growth rate considerably increased. The 

lag time for leaf growth occurred for t=Tƛ, when,  ( )  
 

    
 i.e. it always felled at 11.92% of the upper asymptote. 

 

Richard function: Also known as generalized logistic curve 

and was used to deal with asymmetric growth. Here, an 

additional parameter (δ) was introduced to the logistic function 

which managed which asymptote was nearest to the inflection 

point (Ti). When testing leaf growth patterns δ always had a 

positive value.  In the Richard model, Ti was floating and could 

be given as a proportion of upper asymptote (α).  Parameter δ 

determined this proportion which felled at 
 

(   )
 
 

   6. The 

parameter δ had following interpretations. If δ<1, less than half 

of leaf area would be synthesized before Ti (as in Gompertz 

curve); if δ=1, half of leaf area would be synthesized before Ti 

and half afterwards (as in logistic curve); but when δ>1, more 

than half of leaf area would be synthesized before Ti. Also, α/2 

leaf area would be synthesized until time:        
   [

    

 
]

 
 

In both the data sets, Richard’s curve behaved much more like a 

logistic curve (δ=1), than Gompertz curve. 

 

Table-1: Leaf variations of two species (n = 3) evaluated with 

different time (cm
2
) ±SE. 

Time Mean Leaf Area SR Mean Leaf Area AC 

1 7.083 ±0.891 9.351 ± 1.036 

2 10.167 ±1.733 21.502 ± 1.090 

3 19.070 ± 1.513 45.083 ± 2.100 

4 36.918 ± 2.632 51.006 ± 1.650 

5 41.163 ± 3.583 115.250 ± 1.750 

6 46.035 ± 2.428 137.667 ± 2.963 

7 99.169 ± 3.182 141.252 ± 1.650 

8 105.150 ± 2.902 150.083 ± 2.598 

9 136.819 ± 1.938 166.013 ± 2.126 

10 150.765 ± 4.051 172.917 ± 1.977 

11 157.883.25 ± 2.732 201.252 ± 2.115 

12 170.868 ± 3.848 221.032 ± 4.504 

 

Gompertz function: Gompertz curve was initially used to 

predict mortality of human population but the function that was 

used was a probability distribution function. Much later, the 

famous cumulative form of this model was used
20

. Here also, 

the meaning of different parameters is same as in other models 

but it is a double exponential function. Curve shape is changed 

by curve parameters (k and α) but did not alter the value of 

location parameter (Ti). The parameter Ti controlled the time at 

which the inflection occurred. Gompertz curve is also 

asymmetrical about the point of inflection having coordinates 

(Ti, α/e), which meant that by the time Ti, approximately 36.8% 

of leaf area would be synthesized while α/2 synthesis will take 

place until time t= Ti-log (log (2))/k. 

  

Moreover, lag phase parameterization was also done for 

Gompertz model where Ti was replaced by Tƛ.  Here, Tƛ felled 

when y(t)= α * EXP(-e) i.e. a lag time always occurred at 6.6% 

of the upper asymptote, α. 

Table 2: Model Parameters. 
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Models Tree species α δ k Ti Tƛ ƞi µi 

Logistic 
S. robusta 

A. cordifolia 

183.265 

205.521 

NA 

NA 

0.535 

0.528 

7.221 

5.377 

3.482 

1.591 

0.134 

0.132 

24.508 

27.144 

Richard 
S. robusta 

A. cordifolia 

177.691 

209.436 

0.969 

1.019 

0.536 

0.528 

7.287 

5.340 

3.324 

2.187 

0.272 

0.262 

24.029 

27.505 

Gompertz 
S. robusta 

A. cordifolia 

226.080 

225.080 

NA 

NA 

0.257 

0.315 

6.811 

4.517 

2.923 

1.339 

0.95 

0.116 

21.468 

26.060 

 

Table-3: Model validation. 

Models Tree species R
2
 SSE RMSE MRE 

Logistic 
S. robusta 

A. cordifolia 

0.99 

0.96 

603.710 

2391.367 

7.0929 

14.1167 

0.00167 

0.00478 

Richard 
S. robusta 

A. cordifolia 

0.99 

0.96 

603.710 

2391.367 

7.0929 

14.1167 

0.00167 

0.00476 

Gompertz 
S. robusta 

A. cordifolia 

0.98 

0.97 

799.988 

1800.451 

8.1649 

12.2490 

0.00407 

0.00150 

 

 
 

 
Figure-1: Fitted growth curves from the Richard’s family to experimental data describing the dynamics of cumulative leaf area 

growth of Shorearobusta and Adina cordifolia. 
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The nonlinear modelling of growth process has not only 

advantages in mathematically explaining growth but it also acts 

as an effective tool in estimating the relationship among plant 

organs as well. Furthermore, nonlinear estimation techniques 

may contribute to determination of the economic information in 

plant growth mechanisms.  

 

Leaf area is an important plant characteristic which plays a 

significant role in performing plant photosynthesis. Leaf area 

growth also assists in understanding complex mechanisms of 

biomass synthesis and its allocation to different plant parts. 

Such holistic studies give insight on the adaptability patterns 

and performance of plants in different environmental conditions.  

 

Therefore, accurate measurement of leaf area is essential to 

analyze the interaction between tree/organ growth and 

environment.  

 

Logistic, Richard and Gompertz models have successfully 

proved their robustness by effectively describing a wide range 

of combinations of individual plant groups or plant parts with 

their respective environments. Different tree species varies in 

maturity, environmental adaptations and growth vigor.    

 

Environment includes availability of water, sunlight, soil 

nutrients and other growing conditions. Mathematical models to 

describe leaf area growth are an important components of 

computer simulation growth modelling. In both tree species, the 

S- shape curve followed a different pattern. This occurred due to 

difference in the phenotypes of the two trees in question and 

their different levels of adaptability. 

 

To evaluate any growth data, care should be taken to select a 

suitable growth curve whose parameters should be able to be 

interpreted biologically
21

.  

 

To conclude, all these proposed models were found to be 

suitable for describing leaf area data in both species and sigmoid 

curves should be given priority over other model forms to 

investigate growth and development in plants over time. 

 

Table-4(a): Comparison of statistical parameters of models before solver calculation. 

Models Species SSE df SE of Y R
2
 Critical-t CI 

Logistic 

SR 2980.381 9 18.198 0.93 2.26216 41.166 

AC 2875.452 9 17.874 0.95 2.26216 40.435 

Richard 

SR 2980.381 8 19.301 0.93 2.09302 40.398 

AC 2875.452 8 18.959 0.95 2.30600 43.719 

Gompertz 

SR 1734.399 9 13.882 0.96 2.16037 29.990 

AC 13233.221 9 38.345 0.76 2.26216 86.743 

 

Table-4(b): Comparison of statistical parameters after solver calculation. 

Models Species SSE df SE of Y R
2
 Critical-t CI 

Logistic 

SR 603.710 9 8.190 0.99 2.26216 18.527 

AC 2391.367 9 16.301 0.96 2126216 36.874 

Richard 

SR 603.710 8 8.687 0.99 2.30600 20.032 

AC 2391.367 8 17.289 0.96 2.30600 39.869 

Gompertz 

SR 799.988 9 9.428 0.98 2.26160 21.328 

AC 1800.451 9 14.144 0.97 2.26216 31.996 



International Research Journal of Environmental Sciences ____________________________________________ISSN 2319–1414 

Vol. 11(1), 9-17, January (2022)  Int. Res. J. Environmental Sci. 
 

 International Science Community Association             15 

 
 

 
Figure-2: Residuals Vs Time, Logistic, Richard and Gompertz Models for two species. 
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Figure-3: Resampling and frequency distribution of the leaf area data using Bootstrap simulation method with 2000 iterations at α= 

0.05. The curve is a theoretical normal distribution. 
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Conclusion 

To conclude, sigmoidal curves from Richard’s family are 

unique in explaining the growth patterns of trees/organs in 

different ecological environments. Moreover, deep insight is 

also provided by such models about the functional adjustments 

made by plants in order to adapt a wide range of biotic and 

abiotic stresses. Eventually, all this vital information helps in 

enhancing the plant performance and conserving species in 

nature. Thus, it can be clearly stated that nonlinear asymptotic 

mathematical functions definitely hold an upper edge over linear 

and exponential functions to investigate plant growth, 

adaptation and survival. 
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