International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Radioactivity and Its Possible Impact on Environment and Human Health: A Review

Author Affiliations

  • 1Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh
  • 2Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh
  • 3Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh

Int. Res. J. Environment Sci., Volume 10, Issue (4), Pages 24-34, October,22 (2021)

Abstract

All environmental components consist of an extensive amount of radioactivity despite of various geographical location and geological differences. Radioactivity is found in rocks, soil, air, water, building materials, foods etc. Natural radioactivity (232Th, 40K) that radiates from natural resources is the main contributor to the exposure of biota. Along with that, anthropogenic radionuclides (137Cs, 134Cs, 90Sr) also have a significant role to external exposure impact and human health effect. This paper reviews the theoretical interpretation of radioactive pollution when it exceeds permissible unit. The radioactivity concentration of radionuclides above the threshold level is detrimental to human health as well as environmental components. Swift dividing cells of mammals are the most vulnerable and generally experience the maximum consequential damage from acute exposure (bone marrow, lymphatic tissue). Cellular damage of DNA may occur towards high levels of radiation exposure that results in cancer, genetic deformation of genes, cardiovascular disorder and in some cases death. Thus, the understanding of the contribution of radioactive material present in the surrounding plays a beneficiary role in radiation protection. As gamma radiation is emitted from primordial radionuclides and has a high penetration capacity, gamma-ray spectrometry system is used for the measurement of radioactivity.

References

  1. Kaur, G., Singh, J. (2019)., Effects of radiation in the environment. Eds. Kumar, V., et al., Available at: https://doi.org/10.1007/978-3-030-05770-1_1
  2. Jha, A.N., Cheung, V.V., Foulkes, M.E., Hill, S.J. and Depledge, M.H. (2000)., Detection of genotoxins in the marine environment: adoption and evaluation of an integrated approach using the embryo-larval stages of the marine mussel., Mytilusedulis. Mutat Res; 464, 213–28
  3. Jadiyappa, S. (2018)., Radioisotope: Applications, Effects, and Occupational Protection., Available at: http://dx.doi.org/10.5772/intechopen.79161
  4. Prister, B.S., Shevchenko, V.A. and Kalchenko, V.A. (1982)., Genetic effects of radionuclides on agricultural crops. In: Progress of modem genetics., Moscow: USSR Academy of Science; 138 –148.
  5. Shevchenko, V.A., Abramov, V.I. and Kalchenko, V.A. (1996)., Genetic consequences of radioactive contamination of the environment after the Chernobyl accident for populations of plants., Radioecol., 36, 531–545.
  6. De More, S., Demers, S. and Vernet, M. (2001)., Radiation Effects in Polymeric Materials., Trans. Am. Geophys. Union; 82(41), 477.
  7. Eisenbud, M. and Gesell, T.F. (1997)., Environmental Radioactivity: From Natural, Industrial, and Military Sources., 134. ISBN 9780122351549.
  8. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1988)., Sources Effects and Risks of Ionizing Radiation., Report to the General Assembly, with Annexes. New York, USA: United Nations Publication; 1988. pp. 49-51.
  9. Linsley, G. (1997)., Radiation & the environment: Assessing effects on plants and animals., IAEA Bulletin, 39(1), 17-20.
  10. De Saint-Georges, L. (2009)., Environmental Ionizing Radiation., Hazardous Waste Management. 237-258, Encyclopedia of Life Support System (EOLSS).
  11. Lindgren, A., Stepanova, E., Vdovenko, V., McMahon, D., Litvinetz, O., Leonovich, E., & Karmaus, W. (2015)., Individual whole-body concentration of 137 Cesium is associated with decreased blood counts in children in the Chernobyl-contaminated areas, Ukraine, 2008–2010., Journal of exposure science & environmental epidemiology, 25(3), 334-342.
  12. Cohen, B. (2021)., The Effects of Nuclear Radiation on the Environment., sciencing.com, https://sciencing.com/the-effects-of-nuclear-radiation-on-the-environment-13428111. html.Retrieved 22 July 2021.
  13. Whicker, F. W., & Hinton, T. G. (1996)., Effects of ionising radiation on terrestrial ecosystems. In Protection of the natural environment., International symposium on ionising radiation. Proceedings, V. 1.
  14. Part, N. G. (2011)., Radiation protection and safety of radiation sources International Basic Safety Standards.,
  15. Sparrow, A. H., & Miksche, J. P. (1961)., Correlation of nuclear volume and DNA content with higher plant tolerance to chronic radiation., Science, 134(3474), 282-283.
  16. Tikhomirov, F. A., & Shcheglov, A. I. (1994)., Main investigation results on the forest radioecology in the Kyshtym and Chernobyl accident zones., Science of the Total Environment, 157, 45-57.
  17. Arkhipov, N. P., Kuchma, N. D., Askbrant, S., Pasternak, P. S., & Musica, V. V. (1994)., Acute and long-term effects of irradiation on pine (Pinus silvestris) stands post-Chernobyl., Science of the total environment, 157, 383-386.
  18. Kalchenko, V. A., & Fedotov, I. S. (2001)., Genetic effects of acute and chronic impact of ionizing radiation on Pinus sylvestris L., growing in the control zone of Chernobyl NPP., Genetika, 37(4), 427-447.
  19. Frohnmeyer, H. and Staiger, D. (2003)., Ultraviolet-B Radiation-Mediated Responses in Plants., Plant Physiol.; 133, 1420-60.
  20. Caldwell, M. M., Bornman, J. F., Ballaré, C. L., Flint, S. D., & Kulandaivelu, G. (2007)., Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors., Photochemical & Photobiological Sciences, 6(3), 252-266.
  21. Wallace, W. H. B., Shalet, S. M., Crowne, E. C., Morris-Jones, P. H., & Gattamaneni, H. R. (1989)., Ovarian failure following abdominal irradiation in childhood: natural history and prognosis., Clinical oncology, 1(2), 75-79.
  22. Krivolutsky, D., Martushov, V., & Ryabtsev, I. (1999)., Influence of radioactive contamination on fauna in the area of the Chernobyl NPP during first years after the accident (1986–1988)., Bioindicators of Radioactive Contamination. Nauka, Moscow, 106-122.
  23. Kryshev, I. I. (1995)., Radioactive contamination of aquatic ecosystems following the Chernobyl accident., Journal of Environmental Radioactivity, 27(3), 207-219.
  24. Real, A., Sundell-Bergman, S., Knowles, J. F., Woodhead, D. S., & Zinger, I. (2004)., Effects of ionising radiation exposure on plants, fish and mammals: relevant data for environmental radiation protection., Journal of Radiological Protection, 24(4A), A123.
  25. Wilson, M.D. and Hinton, T.G. (2003)., Comparative bias associated with various estimates of dose to the maximally exposed individual., Health Phys.; 85, 585–593.
  26. Moller, A.P., Surai, P. and Mousseau, T.A. (2005)., Antioxidants, radiation and mutation as revealed by sperm abnormality in barn swallows from Chernobyl., Proc Royal Soc B-Bio Sci, 272, 247– 252.
  27. Barbalace, R. C. (1999)., Chernobyl Disaster, Environmental Chemistry. com. Available at: https://EnvironmentalChemistry.com/ yogi/hazmat/articles/chernobyl12.html
  28. Neel K. Sharma, Rupali Sharma, Deepali Mathur, Shashwat Sharad, Gillipsie Minhas, Kulsajan Bhatia, Akshay Anand and Sanchita P. Ghosh1 (2018)., Role of ionizing radiation in neurodegenerative diseases., Frontiers in aging neuroscience, 10, 134. https://doi.org/10.3389/fnagi.2018. 00134
  29. Maisin, J., Maisin, J. R., & Dunjic, A. (1971)., Lymphatic System and Thymus. Univ., Louvain, Belg.., In: Pathology of Irradiation (C. C. Berdjis, Ed.), Williams and Wilkins Co., Baltimore, pp. 496-541.
  30. Mandl, A. M. (1963)., The radio-sensitivity of oocytes at different stages of maturation. Proceedings of the Royal Society of London., Series B. Biological Sciences, 158(970), 119-141.
  31. Fowler, J.F. (1982)., The response of rapidly dividing tissues to acute or protracted exposure to ionizing radiation., J. Soc. Radiol. Prot., 2, 14-20.
  32. Denekamp, J. (1982)., Cell kinetics and cancer therapy (No. 1048)., Charles C Thomas Pub Limited.
  33. Withers, H.R., Peters, L.J., and Kogelnik, H.D. (1980)., The pathobiology of late effects of radiation. In: Radiation Biology and Cancer Research (R. E. Meyn and H. R. Withers, Eds.), Raven Press, New York. pp. 439-448., undefined
  34. Coggle, J. E., Lambert, B. E., & Moores, S. R. (1986)., Radiation effects in the lung., Environmental health perspectives, 70, 261-291.
  35. Foray, N. and Joubert, A. (2007)., Repair of radiation-induced DNA double-strand breaks in human cells: History, progress and controversies., In: New Research on DNA Repair (Landseer, B.R., Eds.). ISBN 1-60021-385-5.
  36. Moell, C., Garwicz, S., Westgren, V., and Wiebe, T. (1987)., Disturbed pubertal growth in girls treated for acute lymphoblastic leukaemia., Paediatr. Haematol. Oncol. 4: 1-5.
  37. Clayton, P. E., Shalet, S. M., Price, D. A., and Gattamaneni, H. R. (1988)., Does cranial irradiation cause early puberty., J. Endocrinol. 117: 56A.
  38. Leipei, A.D., Stanhope, R., Kitching, P., and Chessells, J. M. (1987)., Precocious and premature puberty associated with the treatment of acute lymphoblastic leukaemia., Arch. Dis. Child., 62, 1107-1112.
  39. Ogilvy-Stuart, A., & Shalet, S. (1993)., Effect of Radiation on the Human Reproductive System., Environmental Health Perspectives, 101(2), 109. https://doi.org/10.2307 /3431383
  40. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998)., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139., Journal of biological chemistry, 273(10), 5858-5868.
  41. Jackson, S. P. (2002)., Sensing and repairing DNA double-strand breaks., Carcinogenesis, 23(5), 687-696.
  42. National Research Council (2006)., Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2., Chapter 4: “Heritable Genetics Effects of Radiation in Human Population. Washington, DC: The National Academies Press. https://doi.org/10.17226/11340.Frimmel, K., ... & Tribulova, N. (2017).
  43. Puukila, S., Lemon, J. A., Lees, S. J., Tai, T. C., Boreham, D. R., & Khaper, N. (2017)., Impact of ionizing radiation on the cardiovascular system: a review., Radiation research, 188(4.2), 539-546.
  44. McGale, P., Darby, S. C., Hall, P., Adolfsson, J., Bengtsson, N. O., Bennet, A. M., ... & Ewertz, M. (2011)., Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden., Radiotherapy and Oncology, 100(2), 167-175.
  45. Veinot, J. P., & Edwards, W. D. (1996)., Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases., Human pathology, 27(8), 766-773.
  46. Parihar, V. K., & Limoli, C. L. (2013)., Cranial irradiation compromises neuronal architecture in the hippocampus., Proceedings of the National Academy of Sciences, 110(31), 12822-12827. doi: 10.1073/pnas.1307301110
  47. Morgan, W.F., and Bair, W. J. (2013)., Issues in low dose radiation biology: the controversy continues. A perspective., Radiat. Res., 179, 501–510. doi: 10.1667/ RR3306.1
  48. Acharya, M.M., Patel, N. H., Craver, B. M., Tran, K. K., Giedzinski, E. and Tseng, B. P. (2015)., Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment., PLoS One, 10(6), e0128316. doi:10. 1371/journal.
  49. Belarbi, K., Jopson, T., Arellano, C., Fike, J. R., and Rosi, S. (2013)., CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation., Cancer Res., 73, 1201-1210.
  50. Kim, J.S., Lee, H.J., Kim, J.C., Kang, S.S., Bae, C.S., Shin, T., et al. (2008)., Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis., J. Radiat. Res., 49, 517–526.
  51. Loganovsky, K. (2009)., Do low doses of ionizing radiation affect the human brain?., Data Sci. J. 8, BR13–BR35.
  52. Lumniczky, K., Szatmari, T., and Safrany, G. (2017)., Ionizing radiation-induced immune and inflammatory reactions in the brain., Front. Immunol. 8, 517
  53. Rao, R.V., and Bredesen, D.E. (2004)., Misfolded proteins, endoplasmic reticulum stress and neurodegeneration., Curr. Opin. Cell Biol., 16, 653–662.
  54. Rubin, P., and Casarett, G.W. (1968)., Respiratory system. In: Clinical Radiation Pathology., Vol. I, Saunders, Philadelphia, pp. 423-470.
  55. Gross, N.J. (1980)., Experimental radiation pneumonitis IV. Leakage of circulatory proteins onto the alveolar surface., J. Lab. Clin. Med., 95, 19-31.
  56. Jennings, F.L. and Arden, A. (1962)., Development of radiation pneumonitis: time and dose factors., Arch. Pathol., 74, 351-359.
  57. Hauer-Jensen, M., Denham, J.W. and Andreyev, H.J. (2014)., Radiation enteropathy--pathogenesis, treatment and prevention., Nat Rev Gastroenterol Hepatol., 11(8), 470–9. doi:10.1038/nrgastro.2014.46
  58. Stacey, R. and Green, J.T. (2014)., Radiation-induced small bowel disease: latest developments and clinical guidance., The Adv Chronic Dis., 5(1), 15–29.
  59. Fuccio,L., Guido, A. and Andreyev, H.J. (2012)., Management of intestinal complications in patients with pelvic radiation disease., Clin. Gastroenterol. Hepatol., 10(12), 1326-1334.
  60. Carr, K.E. (2001)., Effects of radiation damage on intestinal morphology., International Review of Cytology.
  61. Alper, T. (1979)., Cellular Radiobiology., Cambridge University Press, Cambridge.
  62. Doll, R., & Smith, P. G. (1968)., The long-term effects of x irradiation in patients treated for metropathia haemorrhagica., The British journal of radiology, 41(485), 362-368.
  63. Shalet, S. M., Beardwell, C. G., Moriris Jones, P. H., Pearson, D., and Orrell, D. H. 1976., Ovarian failure following abdominal irradiation in childhood., Br. J. Cancer; 33, 655-658.
  64. Brauner, R., Czernichow, P., Cramer, P., Schaison, G. and Rappaport, R. (1983)., Leydig cell function in children after direct testicular irradiation for acute lymphoblastic leukaemia. N. Engl. J. Med. 309: 25-28., undefined
  65. Chang, H. M., Moudgil, R., Scarabelli, T., Okwuosa, T. M., & Yeh, E. T. (2017). Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1., Journal of the American College of Cardiology, 70(20), 2536-2551., undefined
  66. Madan, R., Benson, R., Sharma, D. N., Julka, P. K., & Rath, G. K. (2015)., Radiation induced heart disease: pathogenesis, management and review literature., Journal of the Egyptian National Cancer Institute, 27(4), 187-193.
  67. Cutter, D. J., Schaapveld, M., Darby, S. C., Hauptmann, M., Van Nimwegen, F. A., Krol, A. D., ... & Aleman, B. M. (2015)., Risk for valvular heart disease after treatment for Hodgkin lymphoma., Journal of the National Cancer Institute, 107(4).
  68. Tjessem, K.H., Johansen, S., Malinen, E., Reinertsen, K.V., Danielsen, T., Fossa, S.D. and Fossa, A. (2013)., Long-term cardiac mortality after hypofractionated radiation therapy in breast cancer., Int J Radiat Oncol Biol Phys; 87(2), 337–43.
  69. Liu, Y., Xiao, S., Liu, J., Zhou, H., Liu, Z., Xin, Y., & Suo, W. (2009)., An Experimental Study of Acute Radiation-Induced Cognitive Dysfunction in a Young Rat Model., American Journal of Neuroradiology, 31(2), 383-387. https://doi.org/10.3174/ajnr.a1801
  70. Béhin, A., & Delattre, J. Y. (2004)., Complications of radiation therapy on the brain and spinal cord., In Seminars in neurology, 24(4), 405-417. Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.. 10.1055/s-2004-861535.
  71. Cosset, J. M., Henry-Amar, M., Burgers, J. M. V., Noordijk, E. M., Van der Werf-Messing, B., Meerwaldt, J. H., & Van der Schueren, E. (1988)., Late radiation injuries of the gastrointestinal tract in the H2 and H5 EORTC Hodgkin, Radiotherapy and Oncology, 13(1), 61-68.
  72. Goldstein, H. M., Rogers, L. F., Fletcher, G. H., & Dodd, G. D. (1975)., Radiological manifestations of radiation-induced injury to the normal upper gastrointestinal tract., Radiology, 117(1), 135-140.
  73. Alexakhin, R., Anspaugh, L., Balonov, M., Batandjieva, B., Besnus, F., Biesold, H., ... & Woodhead, D. (2006)., Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience., Report of the Chernobyl Forum Expert group Environment. International Atomic Energy Agency.