International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Fabrication of nano-adsorbent and its kinetics studies for sorption of textile reactive dye

Author Affiliations

  • 1Bioproducts Laboratory, Department of Chemical Engineering, A.C.Tech., Anna University, Chennai 600025, India
  • 2Bioproducts Laboratory, Department of Chemical Engineering, A.C.Tech., Anna University, Chennai 600025, India
  • 3Bioproducts Laboratory, Department of Chemical Engineering, A.C.Tech., Anna University, Chennai 600025, India

Int. Res. J. Environment Sci., Volume 10, Issue (1), Pages 28-38, January,22 (2021)

Abstract

The present study details on the synthesis of Silver nanoparticles using the leaves of Tamarindus indica for application as dye removal agent as a first attempt. Effort has been made using the obtained nanomaterial for environmental applications as bio sorbent. Characterization of the obtained nanoparticles was done ed using X-Ray Diffraction Spectrometer (XRD), Fourier Transform Infra-Red Spectrometer (FTIR) and Raman spectroscopy. The novel nanomaterial resulted from the synthesis had organic surface molecules due to the phyco-chemicals that was confirmed through FTIR. The incorporation of the phyco-chemicals was identified from the X-ray diffraction patterns of silver nano particles. The morphology of the nanoparticles as observed from SEM was found to be smooth, spherical,and homogeneously distributed of size around 20 nm, also confirmed through TEM.Adsorption studies using the nano sorbent showed significant dye reduction of 97.4% atoptimum conditions of 7.0 pH at 27°C with 300 mg of Silver nano particles. kinetic studies on adsorption were carried out, which showed pseudo second order kinetics fits well the adsorption studies with favourable adsorption of reactive dye used. The obtained nanomaterial can be instantly used for controlling the dye that is polluting the environment from textile industries.

References

  1. Literathy P(1981)Industrial effluent treatment, vol. 1. Water and solid wastes: Edited By J. K. Walter and A. Wint. Applied Science Publishers Ltd, London. 1981. Pp. 351. ISBN 0 85334 981.https://doi.org/10.1016/0143-1471(82) 90147-7, undefined, undefined
  2. Mohamed A. Hassaan, Ahmed El Nemr.(2017) Health and Environmental Impacts of Dyes: Mini Review. Amer.Jl. of Env. Sci.and Engg.1 (3) 64-67. doi: 10.11648/j.ajese. 20170103.11., undefined, undefined
  3. Chakraborty J.N. and Chakraborty J.N. (2015). Fundamentals and practices in colouration of textiles. CRC Press. pp.248ISBN 13: 9788190800143., undefined, undefined
  4. Lellis, B., Favaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290. https://doi.org/10.1016/ j.biori.2019.09.001https:// doi.org/10.1016/j.biori.2019.09.001, undefined, undefined
  5. Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment II: Hybrid methods. Advances in Environmental Research, 8(3-4), 553-597. https://doi.org/10.1016/s1093-0191(03)00031-5, undefined, undefined
  6. Nayantara, & Kaur, P. (2018). Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: A review. Biotechnology Research and Innovation, 2(1), 63-73. https://doi.org/ 10.1016/j.biori. 2018.09.003, undefined, undefined
  7. McNamara, K., & Tofail, S. A. (2016). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54-88. https://doi.org/10.1080/23746149.2016.1254570, undefined, undefined
  8. Thamilselvi, V., & Radha, K. V. (2017). Silver nanoparticle loaded silica adsorbent for wastewater treatment. Korean Journal of Chemical Engineering, 34(6), 1801-1812. https://doi.org/10.1007/s11814-017-0075-4, undefined, undefined
  9. Jayakumar, A., & Vedhaiyan, R. K. (2019). Rapid synthesis of phytogenic silver nanoparticles using Clerodendrum splendens: Its antibacterial and antioxidant activities. Korean Journal of Chemical Engineering, 36(11), 1869-1881. https://doi.org/10.1007/s11814-019-0389-5, undefined, undefined
  10. Anu Mary Ealia, S., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, 032019. https:/ /doi.org/10.1088/1757-899x/263/3/032019, undefined, undefined
  11. Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons. pp.464ISBN: 978-0-471-86606-0, undefined, undefined
  12. Tang, L., Zhang, S., Zeng, G., Zhang, Y., Yang, G., Chen, J., Wang, J., Wang, J., Zhou, Y., & Deng, Y. (2015). Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon. Journal of Colloid and Interface Science, 445, 1-8. https://doi.org/10.1016/j.jcis.2014.12.074, undefined, undefined
  13. Escalona-Arranz, J., Peres-Roses, R., Urdaneta-Laffita, I., Camacho-Pozo, M., Rodriguez-Amado, J., & Licea-Jimenez, I. (2010). Antimicrobial activity of extracts from Tamarindus indica L. leaves. Pharmacognosy Magazine, 6(23), 242. https://doi.org/10.4103/0973-1296.66944, undefined, undefined
  14. Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K., & Latha, L. (2010). Extraction, isolation and characterization of Bioactive compounds from plants extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1). https://doi.org/10.4314/ajtcam.v8i1.60483, undefined, undefined
  15. Ndikau, M., Noah, N. M., Andala, D. M., & Masika, E. (2017). Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract. International Journal of Analytical Chemistry, 2017, 1-9. https://doi.org/10.1155/2017/8108504, undefined, undefined
  16. Elamawi, R. M., Al-Harbi, R. E., & Hendi, A. A. (2018). Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control, 28(1). https://doi.org/10.1186/s41938-018-0028-1, undefined, undefined
  17. Zhang, X., Liu, Z., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/ 10.3390/ijms17091534, undefined, undefined
  18. Chen, L., Liao, J., Chuang, Y., & Fu, Y. (2010). Characterization of crystalline silica nanorods synthesized via a solvothermal route using polyvinylbutyral as a template. Journal of Nanoparticle Research, 13(2), 783-790. https://doi.org/10.1007/s11051-010-0078-0, undefined, undefined
  19. Sasikumar, R., Ranganathan, P., Chen, S., Sireesha, P., Chen, T., Veerakumar, P., Rwei, S., & Kavitha, T. (2017). Economically applicable Ti2O3 decorated M-aMinophenol-forMaldehyde resin microspheres for dye-sensitized solar cells (DSSCs). Journal of Colloid and Interface Science, 494, 82-91. https://doi.org/10.1016/j.jcis.2017.01.061, undefined, undefined
  20. Premasudha, P., Venkataramana, M., Abirami, M., Vanathi, P., Krishna, K., & Rajendran, R. (2015). Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bulletin of Materials Science, 38(4), 965-973. https://doi.org/ 10.1007/s12034-015-0945-5, undefined, undefined
  21. Burks, T., Avila, M., Akhtar, F., Göthelid, M., Lansåker, P., Toprak, M., Muhammed, M., & Uheida, A. (2014). Studies on the adsorption of chromium (VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 425, 36-43. https://doi.org/10.1016/ j.jcis.2014.03. 025, undefined, undefined
  22. Duran, N., Marcato, P. D., Conti, R. D., Alves, O. L., Costa, F. T., & Brocchi, M. (2010). Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society, 21(6), 949-959. https://doi.org/ 10.1590/s0103-50532010000600002, undefined, undefined
  23. Ho, Y., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/s0032-9592(98)00112-5, undefined, undefined
  24. Vinay, S. P. (2019). Green synthesis and characterization of silver nanoparticles using cassia Auriculata leaves extract and its efficacy as a potential antibacterial and cytotoxic effect. Advanced Materials Letters, 10(11), 844-849. https://doi.org/10.5185/amlett.2019.0046, undefined, undefined
  25. Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1). https://doi.org/10.1186/s12951-018-0334-5, undefined, undefined
  26. Gopalakrishnan, V., Radha, K. V., & Devasena, T. (2019). Silver nanoparticles synthesised using Andrographis paniculata ameliorates oxidative stress in erythrocyte model. Materials Research Express, 6(8), 0850b6. https://doi.org/10.1088/2053-1591/ab24ea, undefined, undefined
  27. Han, C., Han, J., Li, Q., & Xie, J. (2013). Wet chemical controllable synthesis of hematite ellipsoids with structurally enhanced visible light property. The Scientific World Journal, 2013, 1-5. https://doi.org/10.1155/2013/410594, undefined, undefined
  28. Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. https://doi.org/10.1016/j.jrras.2015.10.002, undefined, undefined
  29. Anastopoulos, I., Robalds, A., Tran, H. N., Mitrogiannis, D., Giannakoudakis, D. A., Hosseini-Bandegharaei, A., & Dotto, G. L. (2018). Removal of heavy metals by leaves-derived biosorbents. Environmental Chemistry Letters, 17(2), 755-766. https://doi.org/10.1007/s10311-018-00829-x, undefined, undefined
  30. Silva, F., Nascimento, L., Brito, M., Da Silva, K., Paschoal, W., & Fujiyama, R. (2019). Biosorption of methylene blue dye using natural Biosorbents made from weeds. Materials, 12(15), 2486. https://doi.org/10.3390/ ma12152486, undefined, undefined
  31. Cardoso, N. F., Lima, E. C., Pinto, I. S., Amavisca, C. V., Royer, B., Pinto, R. B., Alencar, W. S., & Pereira, S. F. (2011).Application of cupuassu shell as bio sorbent for the removal of textile dyes from aqueous solution. Journal of Environmental Management, 92(4), 1237-1247. https://doi.org/10.1016/j.jenvman.2010.12.010, undefined, undefined
  32. Adeogun, A. I., Akande, J. A., Idowu, M. A., & Kareem, S. O. (2019). Magnetic tuned sorghum Husk biosorbent for effective removal of cationic dyes from aqueous solution: Isotherm, kinetics, thermodynamics and optimization studies. Applied Water Science, 9(7). https://doi.org/10.1007/s13201-019-1037-2, undefined, undefined
  33. Ahmad, M. A., Ahmad, N., & Bello, O. S. (2015). Removal of Remazol brilliant blue reactive dye from aqueous solutions using watermelon rinds as adsorbent. Journal of Dispersion Science and Technology, 36(6), 845-858. https://doi.org/10.1080/01932691.2014.925400, undefined, undefined
  34. Jarusiripot, C. (2014). Removal of reactive dye by adsorption over chemical Pretreatment coal-based bottom ash. Procedia Chemistry, 9,121-130. https://doi.org/ 10.10 16/j.proche.2014.05.015doi: 10.1016/j.proche.2014.05.015, undefined, undefined