International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Anti-microbial Activity of Acrylic Resins with In-Situ Generated Nanosilver on Cariogenic Planktonic and Biofilm Bacteria

Author Affiliations

  • 1Department of Medical Microbiology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
  • 2 Private practices, Tehran, Iran
  • 3 Department of Chemistry, Tarbiat Modares University, Tehran, Iran
  • 4 Department of Orthodontics, Faculty of Dentistry, TUMS, Tehran, Iran

Int. Res. J. Biological Sci., Volume 3, Issue (4), Pages 38-46, April,10 (2014)

Abstract

Polymethylmethacrylate (PMMA) widely used in prosthodontics and orthodontics, but there is a problem with acrylic appliances-centered dental caries, inflammation of gingival and periodontal disease. With cariogenic organisms such as Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei and Lactobacillus acidophilus, there is a required for an anti-microbial delivery system with long-term anti-microbial activity. Thus, the main purpose of this work is to explore the effects of the increase in silver nanoparticles (NanoAg) concentration as well as the addition of initiator and accelerator to NanoAg in-situ in PMMA on antibacterial properties. Chemical-cure acrylic resins were used to synthesize NanoAg in-situ in PMMA using silver benzoate,benzoyl peroxide and dimethyl-p-toluidine (NanoAg-IS-PMMA-BD). Antibacterial effectiveness of NanoAg-IS-PMMA-BD was assessed against the cariogenic bacteria and their co-cultures by adherence inhibition as well as planktonic and biofilm bacterial cells growth inhibition. NanoAg-IS-PMMA-BD reduced bacterial adherence by 61.3-99.9% (P0.05) depending on the microorganism type. Planktonic growth inhibition showed 5-7 log (99.9%; P0.05) decrease in time-dependent manner over a 28 day period. NanoAg-IS-PMMA-BD inhibited the biofilm of all test bacteriaand co-cultures by 3-5 log (99.9%; P0.05), compared to PMMA. NanoAg-IS-PMMA-BD maintained anti-microbial effects after the third generation of biofilm formation. The data presented here are novel in that they prove that NanoAg-IS-PMMA-BD effectively inhibited adherence of cariogenic bacteria as well as strong anti-microbial activity in the planktonic phase and subsequent biofilm formation. This showed NanoAg-IS-PMMA-BD has the potential to minimize cariogenic microorganism’s colonization on denture and baseplates of orthodontic appliances.

References

  1. Öztürk F., Malkoc S., Ersöz M., Hakki S.S. and Bozkurt B.S., Real-time cell analysis of the cytotoxicity of the components of orthodontic acrylic materials on gingival fibroblasts, Am. J. Orthod. Dentofacial. Orthop, 140, e243-e9 (2011)
  2. Topaloglu-Ak A., Ertugrul F., Eden E., Ates M. and Bulut H., Effect of orthodontic appliances on oral microbiota-6 month follow-up, J. Clin. Periodontol, 35,433-436 (2011)
  3. Eliades T., Eliades G. and Brantley W.A., Microbial attachment on orthodontic appliances: I. Wettability and early pellicle formation on bracket materials, Am. J. Orthod. Dentofacial. Orthop, 108,351-360 (1995)
  4. Atack N.E., Sandy J.R. and Addy M., Periodontal and Microbiological Changes Associated With the Placement of Orthodontic Appliances: A Review, J. Periodontol, 67,78-85 (1996)
  5. Hosseini F., Adlgostar A. and Sharifnia F., Antibacterial Activity of Pistacia atlantica extracts on Streptococcus mutans biofilm, Int. Res. J. Biological. Sci, 2, 1-7 (2013)
  6. Lessa F.C.R., Enoki C., Ito I.Y., Faria G., Matsumoto M.A.N. and Nelson-Filho P., In-vivo evaluation of the bacterial contamination and disinfection of acrylic baseplates of removable orthodontic appliances, Am. J. Orthod. Dentofacial. Orthop,131,705 e11- e17 (2007)
  7. Gong S-q., Epasinghe J., Rueggeberg F.A., Niu L-n.,Mettenberg D. and Yiu CK., An ORMOSIL-Containing Orthodontic Acrylic Resin with Concomitant Improvements in Anti-microbial and Fracture Toughness Properties, PloS one, 7, e42355 (2012)
  8. Monteiro D.R., Gorup L.F., Takamiya A.S., Ruvollo-Filho A.C., Camargo E.R. and Barbosa DB., The growing importance of materials that prevent microbial adhesion: anti-microbial effect of medical devices containing silver, Inter. J. Anti-microbial. Agents, 34, 103-110 (2009)
  9. Lavanya M., Veenavardhini S.V., Gim G.H., Kathiravan M.N. and Kim S.W., Synthesis, Characterization and Evaluation of Antimicrobial Efficacy of Silver Nanoparticles using Paederia foetida L. leaf extract, Int. Res. J. Biological. Sci, 2, 28-34 (2013)
  10. Kavitha K.S., Baker S., Rakshith D., Kavitha H.U., Hc Y.R. and Harini B.P., Plants as Green Source towards Synthesis of Nanoparticles, Int. Res. J. Biological. Sci, 2, 66-76 (2013)
  11. Salam H.A., Rajiv P., Kamaraj M., Jagadeeswaran P., Gunalan S. and Sivaraj R., Plants: green route for nanoparticle synthesis,Int. Res. J. Biological. Sci, 1, 85-90 (2012)
  12. Ahn S.J., Lee S.J., Kook J.K. and Lim B.S., Experimental anti-microbial orthodontic adhesives using nanofillers and silver nanoparticles, Dent. Mater, 25, 206-213 (2009)
  13. Zhao L., Wang H., Huo K., Cui L., Zhang W. and Ni H., Antibacterial nano-structured titania coating incorporated with silver nanoparticles, Biomater, 32, 5706-5716 (2011)
  14. Jeong S.H., Yeo S.Y. and Yi S.C., The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers, J. Mater. Sci, 40, 5407-5411 (2005)
  15. Monteiro D.R., Gorup L.F., Takamiya A.S., de Camargo E.R. and Barbosa D.B., Silver distribution and release from an anti-microbial denture base resin containing silver colloidal nanoparticles, J. Prosthodont, 21, 7-15 (2012)
  16. Kassaee M., Akhavan A., Sheikh N. and Sodagar A., Antibacterial effects of a new dental acrylic resin containing silver nanoparticles, J. Appl. Polym. Sci, 110,1699-1703 (2008)
  17. Acosta-Torres L.S., López-Marín L.M., Nunez-Anita R.E., Hernández-Padrón G. and Castańo VM./ Biocompatible metal-oxide nanoparticles: nanotechnology improvement of conventional prosthetic acrylic resins, J. Nanomat, 20, 12-17 (2011)
  18. Sondi I., Goia D.V. and Matijevi E., Preparation of highly concentrated stable dispersions of uniform silver nanoparticles, J. Colloid. Interface. Sci, 260, 75-81 (2003)
  19. Riley D.K., Classen D.C., Stevens L.E. and Burke J.P., A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection, Am. J. Med, 98, 349-356 (1995)
  20. Crabtree J.H., Burchette R.J., Siddiqi R.A., Huen I.T., Hadnott L.L. and Fishman A., The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections, Perit. Dial. Int, 23, 368-374 (2003)
  21. Furno F., Morley K.S., Wong B., Sharp B.L., Arnold P.L. and Howdle S.M., Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J. Antimicrob. Chemother, 54, 1019-1024 (2004)
  22. Fan C., Chu L., Rawls H.R., Norling B.K., Cardenas H.L. and Whang K., Development of an anti-microbial resin-A pilot study, Dent. Mater, 27, 322-328 (2011)
  23. Oei J.D., Zhao W.W., Chu L., DeSilva M.N., Ghimire A. and Rawls H.R., Anti-microbial acrylic materials with in situ generated silver nanoparticles, J. Biomed. Mater. Res. B. Appl. Biomater, 100, 409-415 (2012)
  24. Sodagar A., Kassaee M.Z., Pourakbari B., Arab S. and Bahador A., Anti-cariogenic effect of polymethylmethacrylate with in situ generated silver nanoparticles on planktonic and biofilm bacteria, Annals. Of. Biological. Research4,7-11 (2013)
  25. Koo H., Seils J., Abranches J., Burne R.A., Bowen W.H. and Quivey R.G., Influence of apigenin on gtf gene expression in Streptococcus mutans UA159. Antimicrob. Agents. Chemother, 50, 542-546 (2006)
  26. Maithri S.K., Mutangana D. and Sudha D., Molecular Modeling and Docking Studies of PirB Fusion Protein from Photorhabdus Luminescens, Int. Res. J. Biological. Sci, 1, 7-18 (2012)
  27. Bahador A., Lesan S. and Kashi N., Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial, Iran. J. Microbiol, 4, 75-82 (2012)
  28. Guggenheim B., Giertsen E., Schüpbach P. and Shapiro S., Validation of an in vitro biofilm model of supragingival plaque, J. Dent. Res, 80, 363-370 (2001)
  29. Takenaka S, Trivedi HM, Corbin A, Pitts B, Stewart PS. Direct visualization of spatial and temporal patterns of anti-microbial action within model oral biofilms, Appl. Environ. Microbiol, 74, 1869-1875 (2008)
  30. Sevinç A.B. and Hanley L., Antibacterial activity of dental composites containing zinc oxide nanoparticles, Appl Biomat, 94, 22-31 (2010)
  31. Koo H., Xiao J., Klein M. and Jeon J., Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms, J. bacteriol, 192, 3024-3032 (2010)
  32. Xing M, Shen F, Liu L, Chen Z, Guo N, Wang X, et al. Anti-microbial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures, Lett. Appl. Microbiol, 54, 475-482 (2012)
  33. 46staphylococcal biofilms from implant-associated infections, Antimicrob. Agents. Chemothe, 50, 55-61 (2006)
  34. Bjerklin K, Gärskog B, Rönnerman A. Proximal caries increment in connection with orthodontic treatment with removable appliances, J. Orthod, 10, 21-24 (1983)
  35. Lee CF, Lee CJ, Chen CT, Huang CT. -Aminolaevulinic acid mediated photodynamic anti-microbial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures, J. Photochem. Photobiol. B, 75, 21-25 (2004)
  36. Surdeau N., Laurent-Maquin D., Bouthors S. and Gellé M-P., Sensitivity of bacterial biofilms and planktonic cells to a new anti-microbial agent, Oxsil 320N. J. Hosp. Infect, 62, 487-493 (2006)
  37. Hennig S., Nyunt Wai S. and Ziebuhr W., Spontaneous switch to PIA-independent biofilm formation in an ica-positive Staphylococcus epidermidis isolate, Int. J. Med. Microbiol, 297, 117-122 (2007)
  38. O'Gara J.P., ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus, FEMS microbiol. Lett, 270, 179-188 (2007)