International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Involvement of Disease Resistant Quantitative trait loci (QTLs) and resistant (R) Genes in key Signaling pathways of Arabidopsis thaliana during pathogen infection: An Overview

Author Affiliations

  • 1 National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 Uttarpradesh, INDIA

Int. Res. J. Biological Sci., Volume 3, Issue (1), Pages 73-88, January,10 (2014)

Abstract

Plant must continuously defend themselves against attack from fungi, bacteria, viruses, invertebrates etc. The regulating mechanism of any plant pathogen interaction is complex and dynamic. Plants possess both preformed and an inducible defense mechanism. Many resistant genes (R) are present within the chromosome of Arabidopsis thaliana which help in resistance activity against pathogens .In A. thaliana, the disease resistant genes (R) are extremely polymorphic confer parasite recognition and are found at several loci. Quantitative trait loci study in A. thaliana will provide knowledge on number of quantitative resistant loci involved in complex disease resistance, interactions between pathogen biology, plant development and biochemistry .The main QTL approach in A. thaliana is based on rapid developments in marker technology, statistical methodology will help in identifying the same kind of complex disease resistant loci in other crop plants. The A. thaliana genome carries diverse resistant genes are found in several loci linked with salicylic acid, jasmonic acid and ethylene signaling pathways. The present review focus on presence of disease resistant QTLs and genes linked in signaling pathways in A. thaliana during pathogen invasion as well as interaction.

References

  1. Bevan M. and Walsh S., The Arabidopsis genome: a foundation for plant research, Genome Research,15, 1632-1642 (2005)
  2. Flor H.H., Current status of the gene-for-gene concept, Annual review of phytopathology,, 275-296 (1971)
  3. Zipfel C., Robatzek S ., Navarro L., Oakeley E. J., Jones JDG., Felix G. and Boller T ., Bacterial disease resistance in Arabidopsis through flagellin perception, Nature,428,764-767 (2004)
  4. Gupta V., Willits M.G. and Glazebrook J., Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA, Molecular plant-microbe interactions,13, 503-511 (2000)
  5. Arabidopsis G.I., Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, 408, 796-815 (2000)
  6. Yarwood C.E., History and taxonomy of powdery mildews, The powdery mildews: 1-32 (1978)
  7. Plotnikove J.M., Reuber T.L., Ausubel F.M., Pfister D.H., Powdery mildew pathogenesis of Arabidopsis thaliana, Mycologia, (90)6, 1009-1096 (1998)
  8. Adam L. and Somerville S.C., Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana, The Plant Journal,9, 341-356 (1996)
  9. Xiao S., Ellwood S. Findlay K. Oliver R.P. and Turner J.G., Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases, The PlantJournal, 12, 757-768 (1997)
  10. Xiao S., Ellwood S., Calis O., Patrick E., Li T., Coleman M. and Turner J.G.., Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8, Science, 291, 118-120 (2001)
  11. Jorgensen T.H., The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana , Annals of Botany, 109, 833-842 (2012)
  12. Wen Y., Wang W., Feng J., Luo M.C., Tsuda K., Katagiri F., Bauchan G. and Xiao S., Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis, Journal of experimental botany,62, 2117-2129 (2011)
  13. Koh S., Andr A., Edwards H., Ehrhardt D. and Somerville S., Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections, The Plant Journal, 44, 516-529 (2005)
  14. Eckardt N.A., The Arabidopsis RPW8 Resistance Protein Is Recruited to the Extrahaustorial Membrane of Biotrophic Powdery Mildew Fungi, The Plant Cell,21, 2543-2543 (2009)
  15. Dangl J.L., Jones J.D., Plant pathogens and integrated defence responces infection , Nature, 411, (6839) 26-33 (2001)
  16. Orgil U., Araki H., Tangchaiburana S., Berkey R. and Xiao S., Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana, Genetics, 176, 2317-2333 (2007)
  17. Xiao S., Emerson B., Ratanasut K., Patrick E., O'Neill C., Bancroft I. and Turner J.G., Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis, Molecular biology andevolution,21, 1661-1672 (2004)
  18. Yang X., Wang W., Coleman M., Orgil U., Feng J., MaX Ferl R., Turner J.G. and Xiao S., Arabidopsis 14-3-3 lambda is a positive regulator of RPW8 mediated disease resistance, The Plant Journal, 60, 539-550 (2009)
  19. Wang Y., Nishimura M.T., Zhao T. and Tang D., ATG2, an autophagy related protein, negatively affects powdery mildew resistance and mildew induced cell death in Arabidopsis, The Plant Journal, 68(1), 74-87 (2011)
  20. Wilson I.W., Schiff C.L., Hughes D.E. and Somerville S.C., Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession Kashmir-1, Genetics,158, 1301-1309 (2001)
  21. Reuber T.L., Plotnikova J.M., Dewdney J., Rogers E.E., Wood W. and Ausubel F.M., Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants, The Plant Journal, 16, 473-485 (1998)
  22. Frye C.A. and Innes R.W., An Arabidopsis mutant with enhanced resistance to powdery mildew, The Plant Cell, 10, 947-956 (1998)
  23. Tang D., Christiansen K.M. and Innes R.W ., Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase, Plant physiology, 138, 1018-1026 (2005)
  24. Ellis C. and Turner J.G., The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens, The Plant Cell, 13, 1025-1033 (2001)
  25. Vogel J. and Somerville S.Isolation and characterization of powdery mildew-resistant Arabidopsis mutants, Proceedings of the National Academy of Sciences, 97, 1897-190 (2000)
  26. Vogel J.P., Raab T.K., Somerville C.R. and Somerville S.C., Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition, The Plant Journal, 40, 968-978 (2004)
  27. Vogel J.P., Raab T.K., Schiff C. and Somerville S.C., PMR6, a pectate lyase like gene required for powdery mildew susceptibility in Arabidopsis, The Plant Cell, 14, 2095-2106 (2002)
  28. Dewdney J., Reuber T.L., Wildermuth M.C., Devoto A., Cui J., Stutius L.M.., DrummondE.P. and Ausubel F.M.., Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen, The Plant Journal, 24, 205-218 (2000)
  29. Stein M., Dittgen J., Sanchez-Rodri¬guez C., Hou B.H., Molina A., Schulze-Lefert P., Lipka V. and Somerville S., Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration, The Plant Cell, 18, 731-746 (2006)
  30. Gab kim et al., The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2, The plant journal, 57, 645–653 (2008)
  31. Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Leung J. and Staskawicz B.J., RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes, Science, 265, 1856-1860 (1994)
  32. Grant M.R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R.W. and Dangl J.L., Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance, Science, 269, 843-846 (1995)
  33. Gassmann W., Hinsch, M.E. and Staskawicz, B.J., The Arabidopsis RPS4 bacteria resistance gene is a member of the TIR-NBS-LRR family of disease resistance genes, The Plant Journal, 20, 265-277 (1999)
  34. Warren R.F., Henk A., Mowery P., Holub E. and Innes R .W., A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes, The Plant Cell, 10, 1439-1452 (1998)
  35. Swiderski M.R. and Innes R.W., The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily, The Plant Journal, 26, 101-112 (2001)
  36. Bent A.F., Plant disease resistance genes: function meets structure, The Plant Cell, , 1757-1771 (1996)
  37. Banerjee D., Zhang X and Bent A.F., The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance, Genetics, 158, 439-450 (2001)
  38. Gopalan S., Bauer D.W., Alfano,J.R., Loniello A.O., He S.Y. and Collmer A., Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death, The Plant Cell, , 1095-1105 (1996)
  39. Alfano J.R., KimH.S., Delaney T.P and Collmer A., Evidence that the Pseudomonas syringae pv. syringae hrp-linked hrmA gene encodes an Avr-like protein that acts in an hrp-dependent manner within tobacco cells, Molecular plant-microbe interactions, 10, 580-588 (1997)
  40. Aarts M.G.M., Lintel Hekkert B., Holub E.B., Beynon J.L., Stiekema W.J and Pereira A., Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana, Molecular plant-microbe interactions, 11, 251-258 (1998)
  41. Century K.S., Holub E.B. and Staskawicz B.J., NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen, Proceedings of the National Academy of Sciences, 92, 6597-6601 (1995)
  42. Kunkel B.N., Bent A.F., Dahlbeck D., Innes R.W. and Staskawicz B.J., RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2, The Plant Cell, , 865-875 (1993)
  43. Clough S.J., Fengler K.A., Yu I Lippok B., Smith R.K. and Bent A.F., The Arabidopsis dnd1 defense, no death gene encodes a mutated cyclic nucleotide-gated ion channel, Proceedings of the National Academy of Sciences, 97, 9323-8 (2000)
  44. Yi ping Qi et al., Physical Association of Arabidopsis Hypersensitive Induced Reaction Proteins (HIRs) with the Immune Receptor RPS2, J Biol Chem.,286(36), 31297–31307 (2011)
  45. Tao Y., Yuan F., Leister R.T., Ausubel F.M. and Katagiri F., Mutational analysis of the Arabidopsis nucleotide binding site–leucine-rich repeat resistance gene RPS2, The Plant Cell, 12, 2541-2554 (2000)
  46. Lee M.W., Lu H., Jung H.W. and Greenberg J.T., A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2, Molecular Plant-Microbe Interactions, 20,1192-1200 (2007)
  47. Narusaka M., Shirasu K. , Noutoshi Y., Kubo Y., Shiraishi T., Iwabuchi M . and Narusaka Y., RRS1 and RPS4 provide a dual Resistancegene system against fungal and bacterial pathogens, The Plant Journal, 60, 218-226 (2009)
  48. Dangl J.L., Ritter C., Gibbon M.J., Mur LAJ., Wood J.R., Goss S., Mansfield J., Taylor J.D. and Vivian A., Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea, The Plant Cell, , 1359-1369 (1992)
  49. Yu I., Parker J. and Bent A.F., Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant, Proceedings of the National Academy of Sciences, 95, 7819-7824 (1998)
  50. Zhou N., Tootle T.L., Tsui F., Klessig D.F. and Glazebrook J., PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis, The Plant Cell, 10, 1021-1030 (1998)
  51. Simonich M.T. and Innes R.W., A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. Phaseolicola, Molecular plant-microbe interactions, 8, 637 -640 (1995)
  52. Heidrich et al., Arabidopsis EDS1 Connects Pathogen Effector Recognition to Cell Compartment Specific Immune Responses, Science, 334, 1401-1404 (2011)
  53. Bhattacharjee S., Halane M.K., Kim S.H. and Gassmann W., Pathogen Effectors Target Arabidopsis EDS1 and Alter Its Interactions with Immune Regulators, Science, 334, 1405-8 (2011)
  54. Kim S.H., Kwon S.I., Saha D., Anyanwu N.C. and Gassmann W., Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1, Plant physiology, 150, 1723-1732 (2009)
  55. Kiedrowski S., Kawalleck P., Hahlbrock K., Somssich I.E. and Dangl J.L., Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus, The EMBO journal, 11, 4677-4684 (1992)
  56. Shen J., Araki H., Chen L., Chen J.Q. and Tian D., Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana, Genetics, 172, 1243-1250 (2006)
  57. Song J.J., Smith S.K., Hannon G.J. and Joshua-Tor L., Crystal structure of Agronaute and its implications for RISC slicer activity, Science, 305, 1434 -1437 (2004)
  58. Lu M., Tang X. and Zhou J.M., Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria, The Plant Cell, 13, 437-447 (2001)
  59. Xiao et al., Overexpression of Arabidopsis ACBP3 Enhances NPR1-Dependent Plant resistance to Pseudomonas syringe pv tomato DC3000, Plant physiology, 156, 2069-2081 (2011)
  60. Petriacq et al., NAD: Not just a pawn on the board of plant-pathogen interactions.plant signaling and behavior, (8), e22477-7 (2013)
  61. Botella M.A., Parker J.E., Rost L.N., Bittner-Eddy P.D., Beynon J.L., Daniels M.J., Holub E.B. and Jones J.D.G., Three genes of the Arabidopsis RPP1 complexresistance locus recognize distinct Peronospora parasitica avirulence determinants, The Plant Cell, 10, 1847-1860 (1998)
  62. Slusarenko A.J. and Schlaich N.L., Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica), Molecular plant pathology, 4, 159-170 (2003)
  63. Noel L., Moores T.L., van der Biezen E.A., Parniske M., Daniels M.J., Parker J.E. and Jones JDG., Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis, The Plant Cell, 11, 2099-2112 (1999)
  64. Reignault P., Frost L.N., Richardson H., Daniels M.J., Jones JDG. and Parker J.E.., Four Arabidopsis RPP loci controlling resistance to the Noco2 isolate of Peronospora parasitica map to regions known to contain other RPP recognition specificities, Molecular Plant Microbe Interactions, 9, 464-473 (1996)
  65. Yi H. and Richards E.J., A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing, The Plant Cell, 19, 2929-2939 (2007)
  66. Dangl J.L., Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance, Plant physiology, 135, 1129-1144 (2004)
  67. Rose L.E., Bittner-Eddy P.D., Langley C.H., Holub E.B., Michelmore R.W. and Beynon J.L., The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana, Genetics, 166,1517-1527 (2004)
  68. McDowell J.M., Cuzick A., Can C., Beynon J., Dangl J.L. and Holub E.B., Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation, The Plant Journal, 22, 523-529 (2000)
  69. Van Der Biezen E.A., Freddie C.T., Kahn K. and Jones JDG., Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components, The Plant Journal, 29, 439-451 (2002)
  70. Parker J.E., Coleman M.J., Szabo V., Frost L.N., Schmidt R., Van der Biezen, E.A., Moores T. , Dean C., Daniels M.J., and Jones JDG ., The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6, The Plant Cell, , 879-894 (1997)
  71. Shah J., Kachroo P., Nandi A., and Klessig D.F., A recessive mutation in the Arabidopsis SSI2 gene confers SAand NPR1independent expression of PR genes and resistance against bacterial and oomycete pathogens, The Plant Journal, 25, 563-574 (2001)
  72. Van Damme M., Andel A., Huibers R.P., Panstruga R., Weisbeek,P .J. and Van den Ackerveken G., Identification of Arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica, Molecular plant-microbe interactions, 18, 583-592 (2005)
  73. Van Damme M., Zeilmaker T., Elberse J., Andel A., de Sain-van der Velden M., and van de Ackerveken G., Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE, The Plant Cell, 21, 2179-2189 (2009)
  74. Krasileva K.V., Dahlbeck D. and Staskawicz B.J., Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector, The Plant Cell, 22, 2444-2458 (2010)
  75. Rowe H.C. and Kliebenstein D.J., Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea, Genetics, 180, 2237-225 (2008)
  76. Veronese P., Chen X., Bluhm B., Salmeron J., Dietrich R. and Mengiste T., The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection, The Plant Journal, 40, 558-574 (2004)
  77. Holub E.B. , Brose E., Tor M., Clay C., Crute I.R and Beynon J.L., Phenotypic and genotypic variation in the interaction between Arabidopsis thaliana and Albugo candida, MPMI-Molecular Plant Microbe Interactions,8,916-928 (1995)
  78. Borhan M.H., Brose E., Beynon J.L. and Holub E.B., White rust (Albugo candida) resistance loci on three Arabidopsis chromosomes are closely linked to downy mildew (Peronospora parasitica) resistance loci, Molecular Plant Pathology, 2, 87-95 (2001)
  79. Borhan M.H., Gunn N., Cooper A., Gulden S., Tor M., Rimmer S.R. and Holub E.B., WRR4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida, Molecular plant-microbe interactions, 21, 757-768 (2008)
  80. Borhan M.H., Holub E.B., Kindrachuk C., Omidi M., Bozorgmanesh Frad G. and Rimmer S.R., WRR4, a broad spectrum TIR-NBS-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed brassica crops, Molecular plant pathology, 11, 283-291 (2010)
  81. Hayward A.C., Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum, Annual review of phytopathology, 29, 65-87 (1991)
  82. Deslandes L., Pileur F., Liaubet L., Camut S., Can C., Williams K., Holub E., Beynon J., Arlat M. and Marco Y., Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum, Molecular plant-microbe interactions, 11, 659-667 (1998)
  83. Deslandes L., Olivier J., Theulires F., Hirsch J., Feng D.X., Bittner-Eddy P., Beynon J. and Marco Y.,Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes, Proceedings of the National Academy of Sciences, 99, 2404-2409 (2002)
  84. Godiard L., Sauviac L., Torii K.U., Grenon O., Mangin B., Grimsley N.H. and Marco Y ., ERECTA, an LRR receptor like kinase protein controlling development pleiotropically affects resistance to bacterial wilt, The Plant Journal, 36, 353-365, (2003)
  85. Narusaka M., Shirasu K. , Noutoshi Y., Kubo Y., Shiraishi T., Iwabuchi M . and Narusaka Y., RRS1 and RPS4 provide a dual Resistancegene system against fungal and bacterial pathogens, The Plant Journal, 60, 218-226 (2009)
  86. Buell C.R. and Somerville S.C. .,Use of Arabidopsis recombinant inbred lines reveals a monogenic and a novel digenic resistance mechanism to Xanthomonas campestris pv campestris, The Plant Journal, 12, 21-29 (1997)
  87. Godard F., Lummerzheim M., Saindrenan P., Balagua., C. and Roby D ., Hxc2, an Arabidopsis mutant with an altered hypersensitive response to Xanthomonas campestris pv. Campestris, The Plant Journal, 24, 749-761 (2000)
  88. Kliebenstein D., Pedersen D., Barker B., and Mitchell-Olds T., Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana, Genetics 161, 325-332 (2002)
  89. Jander G., Cui J., Nhan B., Pierce N.E. and Ausubel F.M.., The TASTY locus on chromosome 1 of Arabidopsis affects feeding of the insect herbivore Trichoplusia ni., Plant physiology, 126, 890-898 (2001)
  90. Zhang Z., Ober J.A. and Kliebenstein D.J., The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis, The Plant Cell, 18,1524-1536 (2006)
  91. West J.S., Kharbanda P.D., Barbetti M. J. and Fitt BDL, Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe, Plant pathology, 50, 10-27 (2001)
  92. Staal J., Kaliff M., Bohman S. and Dixelius C., Transgressive segregation reveals two Arabidopsis TIR-NBS-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease, The Plant Journal, 46, 218-230 (2006)
  93. Bohman S., Staal J., Thomma B.P.H.J., Wang M and Dixelius C., Characterisation of an Arabidopsis “Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signaling, The Plant Journal, 37, 9-20 (2004)
  94. Lalic J., Agudelo-Romero P., Carrasco P. and Elena S.F., Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes, Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 1997-2007 (2010)
  95. Mahajan S.K., Chisholm S.T., Whitham S.A. and Carrington J.C., Identification and characterization of a locus (RTM1) that restricts long distance movement of tobacco etch virus in Arabidopsis thaliana, The Plant Journal, 14, 177-186 (1998)
  96. Whitham S.A., Anderberg R.J., Chisholm S.T. and Carrington J.C., Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock like protein, The Plant Cell, 12, 569-582 (2000)
  97. Chisholm S.T., Parra M.A., Anderberg R.J. and Carrington J.C. ., Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus, Plant physiology, 127, 1667-1675 (2001)
  98. Cosson P., Sofer L .Le., QH Lager V., Schurdi-Levraud V., Whitham S.A., Yamamoto M.L., Gopalan S., Le Gall O. and Candresse T ., RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein., Plant Physiology, 154, 222-232 (2010)
  99. Sekine K.T., Nandi A., Ishihara T., Hase S., Ikegami M., Shah J. and Takahashi H., Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism,Molecular plant-microbe interactions, 17, 623-632 (2004)
  100. Takahashi H., Miller J., Nozaki Y., Takeda M., Shah J., Hase S., Ikegami M., Ehara Y. and DineshaKumar S.P.,RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism, The Plant Journal, 32, 655-667 (2002)
  101. Jeong R.D., Chandra-Shekara A.C., Kachroo A., Klessig D.F. and Kachroo P ., HRT-mediated hypersensitive response and resistance to Turnip crinkle virus in Arabidopsis does not require the function of TIP, the presumed guardee protein. Molecular plant-microbe interactions, 21, 1316-1324 (2008)
  102. Dempsey D., Pathirana M.S., Wobbe K.K. and Klessig D.F., Identification of an Arabidopsis locus required for resistance to turnip crinkle virus, The Plant Journal,11, 301-311 (1997)
  103. Jeong R.D., Kachroo A .and Kachroo P., Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis, Plant signaling & behavior, 5, 1504 -1509 (2010)
  104. Cooley M.B., Pathirana S., Wu H.J., Kachroo P. and Klessig D.F., Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens, The Plant Cell, 12, 663-676 (2000)
  105. Kang H.G., Kuhl J.C., Kachroo P. and Klessig D.F..,CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to Turnip Crinkle Virus, Cell host & microbe, , 48-57 (2008)
  106. Callaway A., Liu W., Andrianov V., Stenzler L., Zhao J., Wettlaufer S., Jayakumar P. and Howell S.H., Characterization of cauliflower mosaic virus (CaMV) resistance in virus-resistant ecotypes of Arabidopsis, MPMI-Molecular Plant Microbe Interactions, , 810-818 (1996)
  107. Nam M., Koh S., Kim S.U., Domier L.L., Jeon, J.H., Kim H.G., Lee S.H., Bent A.F. and Moon J.S., Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco RINGSPOT VIRUS, Molecules and Cells, 32(5), 421-9 (2011)
  108. Lee J.M., Hartman G.L., Domier L.L. and Bent A.F.,Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus, Molecular Plant Microbe Interactions, ,729-735 (1996)
  109. Decroocq V., Sicard O., Alamillo J.M., Lansac M., Eyquard J.P. , Garcia J.A., Candresse T.,Le Gall O. and Revers F.., Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana, Molecular Plant-Microbe Interactions, 19, 541-549 (2006)
  110. Fujisaki K., Hagihara F., Azukawa Y., Kaido M., Okuno T. and Mise K., Identification and characterization of the SSB1 locus involved in symptom development by Spring beauty latent virus infection in Arabidopsis thaliana, Molecular Plant-Microbe Interactions, 17, 967-975 (2004)
  111. Diener A.C. and Ausubel F.M., Resistance To Fusarium Oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics, 171, 305-321 (2005)
  112. Epple P., Apel K. and Bohlmann H.., Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum, The Plant Cell, 9, 509-520 (1997)
  113. Sijmons P. C ., Grundler FMW., Mendel N., Burrows P.R. and Wyss U ., Arabidopsis thaliana as a new model host for plantâ-parasitic nematodes, The Plant Journal, , 245-254 (1991)
  114. Hamamouch N., Li C., Seo PILJ., Park CMO. and Davis E.L., Expression of Arabidopsis pathogenesis related genes during nematode infection, Molecular Plant Pathology, 12, 355-364 (2011)
  115. Wang X., Mitchum M.G., Gao B., Li C., Diab H., Baum T.J., Hussey R.S. and Davis E.L.., A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana, Molecular Plant Pathology, , 187-191 (2005)
  116. Replogle A., Wang J., Bleckmann A., Hussey R.S., Baum T.J., Sawa S., Davis E.L., Wang X., Simon R. and Mitchum M.G..,Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE, The Plant Journal, 65, 430-440 (2011)
  117. Staswick P.E., Yuen G.Y. and Lehman C.C., Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungusPythium irregular, The Plant Journal, 15, 747-754 (1998)
  118. Vijayan P., Shockey J., Lavesque C.A. and CookR. J., A role for jasmonate in pathogen defense of Arabidopsis, Proceedings of the National Academy of Sciences, 95, 7209-14 (1998)
  119. Ryan C.A., Huffaker A.and Yamaguchi Y ., New insights into innate immunity in Arabidopsis, Cellular microbiology, , 1902-1908 (2007)
  120. Huffaker A., Pearce G. and Ryan C.A., An endogenous peptide signal in Arabidopsis activates components of the innate immune response, Proceedings of the National Academy of Sciences, 103, 10098-10103 (2006)
  121. Tor M., Brown D., Cooper A., Woods-Tor A., Sjolander K., Jones JDG. and Holub E.B., Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9., Plant physiology, 135, 1100-1112 (2004)
  122. Schenk et al., Coordinated plant defense responses in Arabidopsis revealed by microarray analysis, Proc Natl Acad Sci U S A., 10, 97(21): 11655–11660 (2000)
  123. Mang H.G., Laluk K.A., Parsons E.P., Kosma D.K., Cooper B.R., Park H.C., AbuQamar S., Boccongelli C., Miyazaki S. and Consiglio F .,The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs, Plant physiology, 151, 290-305 (2009)
  124. Lawton K., Weymann K. , Friedrich L., Vernooij B., Uknes S. and Ryals J., Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene, Molecular Plant Microbe Interactions, 8, 863-870 (1995)
  125. Glazebrook J., Chen W., Estes B., Chang H.S., Nawrath C., Metraux J.P., Zhu T .and Katagiri F., Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping, The Plant Journal,34, 217-228 (2003)
  126. 126. Nawrath C. and Metraux J.P., Salicylic acid induction -deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation, The Plant Cell, 11, 1393-1404 (1999)
  127. Kinkema M., Fan W. and Dong X., Nuclear localization of NPR1 is required for activation of PR gene expression, The Plant Cell, 12, 2339-2350 (2000)
  128. Ausubel F.M.., Are innate immune signaling pathways in plants and animals conserved?, Nature immunology, 6,973-979 (2005)
  129. Delaney T.P., Friedrich L. and Ryals J.A.., Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance, Proceedings of the National Academy of Sciences, 92, 6602 (1995)
  130. Wang Y., Nishimura M.T., Zhao T. and Tang D., ATG2, an autophagyrelated protein, negatively affects powdery mildew resistance and mildew induced cell death in Arabidopsis, The Plant Journal, 68(1), 74-87 (2011)
  131. Zhou N., Tootle T.L., Tsui F., Klessig D.F. and Glazebrook J., PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis, The Plant Cell, 10, 1021-1030 (1998)
  132. Jirage D., Zhou N., Cooper B., Clarke J.D., Dong X. and Glazebrook J., Constitutive salicylic acid dependent signaling in cpr1 and cpr6 mutants requires PAD4, The Plant Journal, 26, 395-407 (2001)
  133. Feys B.J., Moisan L.J., Newman M.A. and Parker J.E., Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4, The EMBO journal, 20, 5400-5411 (2001)
  134. Li X., Clarke J.D., Zhang Y. and Dong X., Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance, Molecular plant-microbe interactions, 14, 1131-1139.(2001)
  135. Thomma BPHJ., Eggermont K., Penninckx IAMA., Mauch-Mani B., Vogelsang R., Cammue B. and Broekaert W.F.,Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens, Proceedings of the National Academy of Sciences, 95, 15107-15111 (1998)
  136. Van Wees S . and Glazebrook J., Loss of non host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid, The Plant Journal, 33, 733-742 (2003)
  137. Hua J., Sakai H., Nourizadeh S., Chen Q.G., Bleecker A.B., Ecker J.R . and Meyerowitz E.M.., EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis, The Plant Cell , 10,1321-1332 (1998)
  138. Bleecker A. B., Estelle M .A., Somerville C and Kende H ., Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana, Science, 241, 1086-1089 (1988)
  139. Geraats BPJ., Bakker PAHM. and Van Loon L.C., Ethylene insensitivity impairs resistance to soilborne pathogens in tobacco and Arabidopsis thaliana, Molecular plant-microbe interactions, 15, 1078-1085 (2002)
  140. Bent A.F., Innes R.W., Ecker J.R .and Staskawicz B.J., Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens, Molecular Plant Microbe Interactions, , 372-372 (1992)
  141. O'Donnell P.J., Schmelz E.A., Moussatche P., Lund S.T., Jones J.B., and Klee H.J., Susceptible to intolerance a range of hormonal actions in a susceptible Arabidopsis pathogen response, The Plant Journal, 33, 245-257 (2003)
  142. Thomma BPHJ., Eggermont K., Tierens KFMJ. and Broekaert W.F., Requirement of Functional EthyleneInsensitive 2Gene for Efficient Resistance of Arabidopsis to Infection by Botrytis cinerea, Plant Physiology, 121,1093-1101 (1999)
  143. Berrocal-Lobo M. and Molina A., Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum,. Molecular plant-microbe interactions, 17, 763-77 (2004)
  144. Leon-Reyes A., Du Y Koornneef A., Proietti S., Kbes A.P., Memelink, J., Pieterse CMJ.and Ritsema T., Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid, Molecular plant-microbe interactions, 23, 187-197 (2010)
  145. Hirsch J., Deslandes L., Feng D.X., Balagu C. and Marco Y., Delayed symptom development in ein2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum, Phytopathology, 92, 1142-1148 (2002)
  146. Stotz H.U., Pittendrigh B.R., Kroymann J., Weniger K., Fritsche J., Bauke A. and Mitchell-Olds T., Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth , Plant Physiology, 124,1007-1018 (2000)
  147. Ton J., Davison S., Van Wees SCM., Van Loon L.C. and Pieterse CMJ., The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling, Plant Physiology, 125, 652-661 (2001)
  148. Pantelides I.S., Tjamos S.E. and Paplomatas E.J.., Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahlia, Molecular plant pathology, 11, 191-202 (2010)
  149. Spoel S.H., Koornneef A., Claessens SMC., Korzelius J.P., Van Pelt J.A., Mueller M.J., Buchala A.J., Metraux J. P., Brown R. and Kazan K.., NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol, The Plant Cell, 15, 760-770 (2003)
  150. Van Wees S., De Swart EAM., Van Pelt J.A., Van Loon L.C. and Pieterse CMJ.Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana, Proceedings of the National Academy of Sciences, 97, 8711-8716 (2000)
  151. Nandi A., Kachroo P., Fukushige H., Hildebrand D.F., Klessig, D.F. and Shah J., Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant, Molecular plant-microbe interactions, 16, 588-599 (2003)
  152. Nickstadt A., Thomma BPHJ., Feussner IVO., Kangasjarvi., J., Zeier J., Loeffler C., Scheel D. and Berger S., The jasmonateinsensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens, Molecular plant pathology, 5, 425-434 (2004)
  153. Thatcher L.F., Manners J.M. and Kazan K.., Fusarium oxysporum hijacks COI1mediated jasmonate signaling to promote disease development in Arabidopsis, The Plant Journal, 58, 927-939 (2009)
  154. Laurie-Berry N., Joardar V., Street I .H. and Kunkel B.N., The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae, Molecular plant-microbe interactions, 19, 789-800 (2006)
  155. Ellis C., Karafyllidis I., Wasternack C. and Turner J.G.., The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses, The Plant Cell, 14, 1557-1566 (2002)
  156. Xie D.X., Feys B.F., James S., Nieto-Rostro M. and Turner J.G.., COI1 an Arabidopsis gene required for jasmonate-regulated defense and fertility, Science, 280, 1091-109 (1998)
  157. Stone J.M., Heard J.E., Asai T. and Ausubel F.M., Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants, The Plant Cell, 12, 1811-1822 (2000)
  158. Clarke J.D., Volko S.M., Ledford H., Ausubel F.M. and Dong X.., Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis, The Plant Cell, 12, 2175-2190 (2000)
  159. Moreno A.A., Mukhtar M.S., Blanco F., Boatwright J.L., MorenoI., Jordan M.R.., Chen Y., Brandizzi F., Dong X. and Orellana A ., IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses, PloS one, 7(2), e31944 (2012)
  160. Chini A. and Loake G.J., Motifs specific for the ADR1 NBS-LRR protein family in Arabidopsis are conserved among NBS-LRR sequences from both dicotyledonous and monocotyledonous plants, Planta, 221, 597-601 (2005)
  161. Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Leung J. and Staskawicz B.J.., RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes, Science, 265, 1856-1860 (1994)
  162. Staal J., Kaliff M., Dewaele E., Persson M. and Dixelius C., RLM3, a TIR domain encoding gene involved in broadrange immunity of Arabidopsis to necrotrophic fungal pathogens, The Plant Journal, 55, 188-200 (2008)
  163. Eitas T.K., Nimchuk Z.L. and Dang J.L., Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB., Proceedings of the National Academy of Sciences, 105, 6475-80 (2008)
  164. Torii K.U., Mitsukawa N., Oosumi T., Matsuura Y., Yokoyama R., Whittier R.F. and Komeda Y .,The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats, The Plant Cell, , 735-746 (1996)
  165. Walker J.C ., Receptor like protein kinase genes of Arabidopsis thaliana, The Plant Journal, , 451-456 (1993)
  166. Czernic P., Visser B., Sun W., Savoure A., Deslandes L., Marco Y., Van Montagu M. and Verbruggen N., Characterization of an Arabidopsis thaliana receptor like protein kinase gene activated by oxidative stress and pathogen attack, The Plant Journal, 18, 321-327 (1999)
  167. Crute R.I., Gene for gene recognition in plant pathogen interactions, Phil.Trans .R.Soc.lond.B, 346 345-349 (1994)