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Abstract  

Plant must continuously defend themselves against attack from fungi, bacteria, viruses, invertebrates etc. The regulating 

mechanism of any plant pathogen interaction is complex and dynamic. Plants possess both preformed and an inducible 

defense mechanism. Many resistant genes (R) are present within the chromosome of Arabidopsis thaliana which help in 

resistance activity against pathogens .In A. thaliana, the disease resistant genes (R) are extremely polymorphic confer 

parasite recognition and are found at several loci. Quantitative trait loci  study in A. thaliana will provide  knowledge on 

number of quantitative resistant loci involved in complex disease resistance, interactions between pathogen biology, plant 

development and biochemistry .The main QTL approach in A. thaliana is based on  rapid developments in marker 

technology, statistical methodology  will help in identifying the same kind of complex disease resistant  loci in other crop 

plants. The A. thaliana genome carries diverse resistant genes are found in several loci linked with salicylic acid, jasmonic 

acid and ethylene signaling pathways. The present review focus on presence of disease resistant QTLs and genes linked in 

signaling pathways in A. thaliana during pathogen invasion as well as interaction. 
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Introduction 

Arabidopsis thaliana belongs from family Brassicaceae is a 

preferred model plant for genomic studies due to its  short life 

cycle, small size as well as a known genome sequence. The 

entire reported 25,496 genes of A.thaliana  with a genome size 

of 125 megabases  are distributed over five chromosomes
1
. The 

incorporation of disease resistant  genes of A. thaliana  in to  

agronomically  important crops will be one of the most 

economically  effective method  for controlling  plant diseases. 

In this context, the present study  on the identification  of  

resistant  genes of A.thaliana and its positions  on different 

chromosomes  loci  are enumerated in this review. The 

hypothesis mentioning  on “gene for gene resistance” aptly 

defines “The pathogen avirulent  (avr) gene and the plant 

resistant genes(R) are fully interacted during pathogen 

interaction’’
2
.
 
Another type of defense mechanism in A. thaliana 

on innate immunity is the receptor mediated  due to pathogen 

associated molecular patterns and leucine rich repeat receptor 

kinases
3
.
 

In A. thaliana, disease resistant genes (R) were 

interconnected with salicylate, jasmonate and ethylene signaling 

molecules. Mutation in disease resistant genes activate or 

suppress any one of three signaling pathways in Arabidopsis. 

The three main signaling pathways of salicylate, jasmonate and 

ethylene dependent resistance responses are mutually inhibitory 

in case of  A. thaliana
4
. A. thaliana is under a constant threat of 

infection with many biotrophic and necrotrophic pathogens as 

well as viruses  such as  Pseudomonas  syringae , Peronospora  

parasitica,  Ralstonia solanacearum, Xanthomonas campestris, 

Albugo candida, Alternaria  brassicicola,  Fusarium  

oxysporum, Tobacco etch  virus, Cucumber mosaic virus, 

Cauliflower mosaic virus, Heterodera   schachtii    and Pythium  

species etc. 

 

Brief idea on Arabidopsis thaliana disease resistant 

genes 
 

In A. thaliana, Based on structural motif and interacting domain, 

seven  distinct classes of resistant genes (R) are  acting against  

specific pathogen. Short description of this disease resistant 

genes of A. thaliana are given below in table 1. A. thaliana 

contain a large  number of disease  resistant  genes are 

characterized structurally  with  nucleotide binding sites, leucine 

rich repeat region, tir-domain, a putative coiled coil domain. 

The A. thaliana contains the total eighty five number of tir-nbs-

lrr genes at sixty four loci, thirty six numbers of cc-nbs-lrr  

genes at thirty loci. The nbs-lrr classes are without tir or cc 

domain at their N -terminus present seven times at six loci, 

fifteen  truncated tir -nbs-lrr genes lack lrr at ten  loci, six 

numbers of cc-nbs genes at five loci
5
. In Arabidopsis genome 

fourty six numbers of disease resistant genes are single tons and 

fifty are in pairs in given below in table 2.
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Table-1 

Seven distinct classes of  disease resistant genes in Arabidopsis thaliana are given below 

Class Gene Structure References 

1 IRE1/bZIP60 
Defining myrostilation motif / serine/threonine kinase  

catalytic domain 
159 

2 ADR1,RPS2 

Leucine rich repeat  domain(LRR)/RPS2 binding site 

domain(NBS)/ N-TerminaLeucin 

Zippedomain/Coiledcoildomain 

160,161 

3 
RLM3,WRR4,RPP5, 

RPP2A,RPP2B, TAO1 

Similar to Class 2 but instead of an LZ or CC domain 

contains  a domain that is Toll like / Interleukin1 domain/                                                                  

TIR domain 

80,162,70,163 

4 RPP27 

LRR domain in extracellular,  transmemembrane domain in 

single                                                                              

 and  a small cytoplasmic tail proteins are called RLPs. 

121 

5 

RLK1/RLK4/RLK5, 

FLS2/RLK3/                                                                                                                   

ERECTA 

Cytoplasmic Serine/Threonine kinase domain/Extracellular 

LRR domain/and a Transmembrane  domain(TM) .  These 

genes are called receptor like kinases 

164 

165 

166 

6 RPW8 
Small  cytoplasmic  proteins and contain a  coiled colied 

domain 
17 

7 
Small cytoplasmic protein not anchored in Plasmamembrane/ contains two  

  tandem protein kinase domains. 

A few proteins in Arabidopsis   thaliana  are  not categorized in to one of these seven classes 

 

Table-2 

Resistant genes are distributed between chromosomes of 

Arabidopsis  thaliana are given below 

Chromosome Number of disease resistant 

genes 

1 49 

2 2 

3 16 

4 28 

5 55 

The Arabidopsis genome initiative (2000) 

 

Brief idea on Arabidopsis thaliana pathosystem 

The eighteenth century is the beginning of the scientific 

emergence of plant pathology. In A. thaliana, the defense 

mechanism is guided by a complex signaling network. In plant 

species, a relatively small proportion of pathogens successfully 

invade it as well as spread diseases. The hypersensitive response 

generated by invading phyto-pathogen. Then the hypersensitive 

response leads to triggers nonspecific resistance known as 

systemic acquired resistance. Both the response work each other 

during different pathogen infection. The name of diseases 

caused by different pathogens in A. thaliana are given below in 

table-3. 
 

Quantitative trait loci and disease resistant genes in  Arabidopsis 

thaliana  with  different pathogens: Here, we focus  many 

number of disease resistant  gene loci present  in five  different 

chromosomes of A. thaliana  against different pathogens  and  

the resistant  loci  was  given the  name of  pathogen. The 

disease resistant genes and quantitative trait loci of A. thaliana 

are mapped in to five chromosomes .The map was given below 

in figure-1. (contain gene ID from TAIR, www.arabidopsis.org). 
 

Table-3 

Arabidopsis  thaliana  pathosystems
167

 

Disease Pathogen 

Fungal  

1 Downy mildew Hyaloperonospora  

parasitica 

2  White blister Albugo candida 

3 Damping Off Pythium  Species 

4 Dark leaf spot Alternaria brassicicola 

5 Powdery mildew E. cruciferarum, 

E.cichoracearum 

6 Vascular wilt F. oxysporum 

7 Leaf mold and Leaf spot Cladosporium 

8 Damping off or wire stem Thanatephorus  

cucumeris 

Bacterial  

9 Black rot on crucifers Xanthomonas campestris 

10.Bacterial speck on crucifers Pseudomonas  syringae 

Viral  

11.Mild stunting Tobacco mosaic virus 

12. Mild stunting and 

desiccation 

Turnip crinkle virus 

13 Vein clearing and chlorotic  

spots 

Cauliflower mosaic virus 

Nematode  

14 Cyst nematode Heterodera schachtii 
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Resistant towards Erysiphe species 

The powdery mildew diseases are common plant diseases on 

agricultural and horticultural crops
6
. A. thaliana found to be 

infected with three powdery mildews called as Erysiphe 

cichoracearum(UCSC isolate), Erysiphe cruciferarum(UEA 

isolate) and Erysiphe orontii
7
.
 

The resistance reaction 

phenotypes of A. thaliana was characterized and resistant loci 

were mapped. A.thaliana disease resistant genes shown 

resistance to few pathogenic strains of a particular type of 

pathogen. A. thaliana six accessions Wa-1,Kas-1,Stw-0,Su-0,Sl-

o and Te-0 were  shown resistant to a wild isolate of the  

powdery mildew pathogen Erysiphe cichoracearum .A.thaliana 

contains  five semi dominant  powdery mildew disease resistant 

loci RPW1,RPW2,RPW4,RPW5. The name of loci are designed 

as RPW (recognition to powdery mildew ). The loci are map to 

chromosomes 2, 3, 4 and 5 respectively and  RPW3 was a 

recessive resistant locus  located on chromosome 3
8
. A. thaliana  

accessions  La-er and  Ms-o infected by two Erysiphe strains  

Erysiphe  cruciferarum  UEA1  and   Erysiphe cichoracearum 

UCSC1 .The three  dominant loci RPW6, RPW7, RPW8 were  

identified in  A. thaliana and mapped  to chromosome 5, 3 and 

3. RPW7 and RPW8 were found to be complex resistant  loci 

with dual specificity
9
.
 .

A. thaliana RPW8 locus contains two 

naturally polymorphic, dominant RPW8.1 and RPW8.2, 

individually control resistance through salicylic acid dependent 

defenses. In A. thaliana, RPW8 mediated resistance causes an 

oxidative burst, a hypersensitive  reaction and induction of 

pathogenesis related gene-1 expression
10

. A. thaliana  RPW8 

loci  determines the frequency of powdery mildew disease in a 

heterogenous environments and potentially maintains genetic 

variation for resistance in natural populations
11

. RPW8.2 played 

the main role in post penetration resistance against 

Golovinomyces cichoracearum UMSG1
12,13

. A.thaliana RPW8 

functions as a broad spectrum mildew disease resistance by 

targeting the extra haustorial  membrane (EHM) of the invading 

pathogen
14

.
 

RPW8 may serve a “guardess” for RAR1 and 

EDS1
15

. The nucleotide diversities were high at RPW8.1 and 

RPW8.2 in fifty one A.thaliana accessions as well as the 

identified mutations confer phenotypic variations. The  presence 

of RPW8 giving fitness benefits and costs effects in  the 

presence and absence of  the  pathogens
16

. However, the origin  

of the powdery mildew disease locus obtained through sequence 

analysis of RPW8 from A. lyrata, Brassica rapa  and Brassica 

oleraceae
17

.
 
In further experimental studies of A.thaliana Ms -0 

accession against Golovinomyces  species indicates that RPW8 

loci contain two paralogus genes RPW8.1 and RPW8.2 confers 

resistance through salicylic acid signaling pathways. The 14-3-3 

lambda is a positive regulator for  RPW8
18

.
. 
A.thaliana Col-0 

accessions, RPW8.2 interacts with phytochrome-associated 

protein phosphatase type 2C negatively regulates basal defense 

against powdery mildew
19

. The quantitative trait loci RPW10, 

RPW11 and RPW12 were confer  resistant against  powdery 

mildew disease in A. thaliana Col-gl1xKas-1. The QTL of RPW 

-10 was mapped on chromosome-3, RPW-11 occurred on 

chromosome -5 and RPW-12 was mapped on the chromosome- 

2 in A. thaliana
20

.
 
A well developed pathosystem in between A. 

thaliana accessions col-0 and E. orontii were observed. 

A.thaliana accession columbia  infection with E orontii  leads to 

expression of defense related genes PR1, BGL2(PR2), PR5 and 

GST1. A. thaliana mutants containing Pad4-1, npr1-1, eds5-1 

and a double npr1-1 eds5-1 shows susceptibility to E. orontii
. 21. 

A. thaliana mutants are displays enhanced disease resistance-1 

to the fungus E. cichoracearum. The enhanced disease resistant 

mutant does not constitutively express the pathogenesis related 

genes of PR-1, BGL2 or PR5. The edr-1 was mapped to 

chromosome- 1
22

.
 
 In other way,  A. thaliana mutant that shown 

enhanced disease resistance-2 to the E. cichoracearum. A. 

thaliana mutant in edr-2 mediated resistance inhibits salicylic 

acid defense signaling in npr1, pad4 and sid-2. Edr2 gene locus 

was mapped on chromosome - 4
23

. A. thaliana  mutants 

constitutively express a vegetative storage protein-1(VSP-1) 

now called Cev-1 were produced very smaller quantity that  

mediate jasmonate and ethylene signaling pathways and was 

mapped on chromosome-5
24

. A. thaliana four mutant loci 

designated as powdery mildew resistant -1,-2,-3,-4 ( pmr- 1, 

pmr-2, pmr-3, pmr-4)   were identified  as susceptible to  E. 

cichoracearum. Pmr1 and pmr2  were  mapped to chromosome 

-1, Pmr-4 was mapped to  chromosome 4 and Pmr-3 was 

mapped to chromosome 5
25

. Pmr-5 gene mutation  rendered in  

A. thaliana  resistance to the  E. cichoracearum and E.orontii . 

Resistance in this mutant   may be due to the loss of a 

susceptibility factor  or to the activation of a  novel form of 

defense
26

.
 
Pmr-6 encodes a pectate  lyase like protein is a 

susceptibility locus in A.thaliana. salicylic acid, jasmonic acid 

and ethylene signaling pathways are not involved in the Pmr-6 

gene mechanism
27

. A. thaliana three mutants called 

eds14,eds15,eds16 found to be highly disease susceptibility to 

Erysiphe orontii. Eds16 was mapped to chromosome 1
.28..

 Pen-3 

mutants of A. thaliana were resistant to Erysiphe cichoracearum 

.Pen-3 loci was mapped to  chromosome-1 
29.. 

 

Resistant towards Pseudomonas syringae 

The genetic tractability of both A. thaliana  and Pseudomonas  

syringae  shown a  remarkable model  for research on plant 

pathogen interactions. Tremendous progress had been made in 

understanding how plant A. thaliana recognizes Pseudomonas 

syringae Avr  proteins and mounts effective defense against A. 

thaliana  resistant loci RPS2 shown significant defense against 

RPM1
30.

. In a map based  cloning approach many A. thaliana 

RPS2, RPM1, RPS4, RPS5 and PBS1 were isolated where 
.
PBS1 belongs to the  nucleotide  binding site leucine rich repeat 

class  and  RPS2, RPM1 and RPS5 proteins have coiled –coiled  

structures at their N termini and are classified in the CC 

subclass of NBS-LRR
31-36

. In A. thaliana RPS2 leucine-rich 

repeat domain determine very well interaction with 

Pseudomonas syringae
37

. RPS4 had a Toll Interleukin-1 

receptor like  homology along with  other NBS-LRR proteins. 

The Avr gene products  AvrRpt2, AvrRpm1, AvrB, AvrRps4 

and AvrPphB  were  believed  to be delivered from bacteria in 

to plant cell
.38.

. Avr genes expression  in the plant cell leads to 
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the HR dependent on the corresponding  resistant  genes
39

.
 

NDR1 mutation strongly affects resistance by a class of CC-

NBS-LRR genes
40

.
 

NDR1 mutation affected Pseudomonas  

syringae, resistance by  CC-NBS-LRRs class of gene name 

RPS2, RPM1 and RPS5 resistant genes where as resistance 

mediated RPS4. TIR-NBS-LRR was affected by EDS1 mutation 

but not by NDR1
41

. RPS2 was required for elicitation of 

hypersensitive (HR)  response  when  Pseudomonas syringae 

was  mounted . RPS2  was  a quantative trait loci  mapped on 

the chromosome- 4
42

.
 
Five classes of mutants of A.thaliana were 

identified  including mutations at  RPS2 , dnd mutations causing 

a “defense, no death” loss of HR phenotype, a lesion mimic 

mutant that also exhibited an hypersensitive response 

phenotype
43

. A. thaliana was four hyper induced reaction gene 

family known as HIR1-HIR4. A. thaliana HIR1 and HIR2 form 

complexes with RPS2 reduced the growth of Pseudomonas 

syringae Pto Dc3000 by effector  triggered immunity(ETI
)44

. 

Mutational analysis of RPS2 gene encodes a 105kd protein  

revealed that the NBS and an N-terminal  leucine zipper (LZ) 

motif were critical for RPS2 function
45

.
 
A. thaliana WIN3gene 

requires PAD4 in the resistance pathways towards 

Pseudomonas syringae  effector  AvrRpt2. WIN3 gene 

accumulates salicylic acid during infection with Pseudomonas 

syringae
46

. RPS4 was a disease resistant locus identified in 

Arabidopsis on chromosome-5
.47

. RPS3 was a disease resistance 

locus mapped on chromosome-3  using a previously cloned  

avirulence  gene AvrB  from a non-Arabidopsis  soybean 

pathogen . Pseudomonas syringae pv  glycine  and RPG1 and 

RPS3 both confer  AvrB-specific  disease resistance ,suggesting  

that these genes  are homologous
48

. 
.
EDS1 require a resistant 

gene loci for RPS4  against Pseudomonas bacteria expressing  

the  avirulence gene  AvrRps4
49

. A. thaliana PAD4 gene 

mapped to chromosome-3
50

. RPS5 was a disease resistance gene 

in A. thaliana with specificity AvrPph3 and was mapped to 

chromosome-1
51

.
 

RPS6 was a disease resistant gene in A. 

thaliana against Pseudomonas syringae. RPS6 loci was mapped 

on  chromosome 5
52

. In another experiment, Enhanced Disease 

Susceptibility-1 (EDS1) regulated by RPS4 and RPS6  provide  

basal resistance in A.thaliana
53

.
 
RPS6 belongs to TIR-NBS-LRR 

class of gene.
54..

A defense gene  ELI3  expresses mRNA in A. 

thaliana leaves in response to Pseudomonas  syringae  strains .  

and this loci was mapped on chromosome-3
55

.
 
Fitness cost of 

RPM1 locus in A. thaliana fight the pathogen Pseudomonas 

syringae carrying AvrRPM1 or AvrB
56

. AGO4 gene exert an 

effective resistance in A. thaliana against Pseudomonas 

syringae. AGO4 was one of the critical components in the 

transcriptional gene silencing pathway associated  with siRNA 

that directs DNA methylation  at specific  loci
57

. NHO1 was a 

gene in A.thaliana  required for resistant  against pseudomonas 

syringae
58

.
 
A. thaliana six ACBP3 genes ACBP1 to ACBP6 

mediate defense to the bacterial pathogen Pseudomonas  

syringae pv tomato DC 3000
59

. A.thaliana contains higher 

nicotinamide adenine dinucleotide play an important role in 

plant immunity by stimulating salicylic acid
60

. 

 

 

Resistant towards   Peronospora  parasitica 

A. thaliana accession Wassilewskija, the RPP1 was a complex 

loci contains four genetically linked recognition specificities 

and was mapped on chromosome 3
61

.
 
In different accessions of  

A.thaliana , so many number of disease resistant loci RPP1 to 

RPP28  were  mapped in presence of  major recognition gene 

complexes  on five chromosomes  which were resistant to 

Peronospora  parasitica
62

. RPP5 was a  complex loci in A. 

thaliana Ler and Col-O  haplotypes exhibits intra specific  

polymorphism play an important role in innate immunity. 

 

The RPP5 gene complex exhibit high level polymorphism by 

extensive recombination between LRRs encode  different 

numbers of  LRRs
63

. The A. thaliana different accessions 

interact with Peronospora parasitica Noco2 isolate and four 

RPP loci were identified such as RPP14.1, RPP14.2 RPP14.3 

and RPP 5.2. RPP14.1, RPP14.2. RPP14.3 resistant loci were 

mapped on chromosome 3 and RPP5.2 loci was mapped on 

chromosome 4
64

. 
 

RPP5 locus was  respond to pathogens that disturb RNA 

silencing
65

. Using gene chip  A.thaliana  genome array ,three 

RPP genes called RPP4, RPP7 and RPP8 directed towards the 

pathogenic  oomycete  Peronospora  parasitica. These common 

set of target genes  controls the  regulation  of  all  three 

signaling pathways . Many defense genes predominantly encode 

putative signaling protein molecules that play an important role 

in defense
66

. In A. thaliana , RPP1, RPP10, RPP14 loci  were 

mapped to the same locus on the chromosome- 3  which were 

resistant towards P. parasitica isolates Emoy2, Cala2 and  

Noco2. RPP1, RPP10, RPP14 were  complex locus encodes  

Toll-Interleukin-1-Resistance –Nucleotide binding site to detect 

the four Peronospora parasitica  isolates. The RPP13 loci was 

mapped to chromosome-3
67

. Another two RPP resistance loci 

called as RPP7 and RPP8 in A.thaliana against Peronospora 

parasitica was mapped on chromosome-1 and chromosome-5. 

RPP7 and RPP8  loci resistant activity was not suppressed by 

mutations in either EDS1or NDR1
68

. RPP4  was mapped on  

chromosome- 4
69

.
 
EDS1 require a subset of RPP2, RPP4, RPP5, 

RPP21 conferring resistance to the Peronospora  parasitica
70

. 

In A. thaliana ,Ssi-1(suppressor of  salicylic acid  insensitivity-

1)dominant gene  restores pathogenesis related gene like PR1, 

PR2, PR5 genes  to pseudomonas syringae pv tomato and  Ssi  

was mapped to chromosome 4
71

. A. thaliana mutants reduced  

susceptibility to  the downy mildew  pathogen 

Hyaloperonospora  parasitica  was studied and six dmr (downy 

mildew resistance) loci  called as dmr1, dmr2, dmr3, dmr4, 

dmr5, dmr6 were identified
72

.
 
In A. thaliana , recessive downy 

mildew resistant -1 allele (Dmr1) encodes homoserine kinase 

that was involved in resistance
73

. Hyaloperonospora 

Arabidopsis ATR1 was interact with RPP1 leading to activation 

of plant disease resistance in A. thaliana
74

. 
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Resistant towards  Botrytis cinerea. 

Botrytis cinerea is a necrotrophic fungi interact very well with 

A.thaliana..When Botrytis cinerea interact with A thaliana , 

antimicrobial compound camalexin accumulated which provides 

defense response. 
75 .

A. thaliana three loci BOS2, BOS3 and 

BOS4 were identified as resistant  loci against Botrytis cinerea. 

BOS2 BOS3 loci were mapped  to chromosomes- 4 and -1 ..The 

BOS2, BOS3 and BOS4 loci influence camalexin  levels  and 

activate the ethylene and jasmonate signaling pathways
76

. 

 

Resistant towards Albugo candida 

Biotrophic oomycete  pathogen Albugo candida  infects A. 

thaliana .The disease caused by Albugo candida  bears its name 

white rust for the production of white sori
77

.
 
Three resistant  loci 

called RAC-1(Recognition of Albugo candida), RAC-2 and 

RAC-3  were used to map and identify in accessions of 

A.thaliana  accessions Ksk1 and Ksk-2 . 
78. .

RAC -1 is a 

dominant loci of Arabidopsis accession Ksk-1 mapped  to 

chromosome 1 ,RAC-3 is  closely linked to the RPP8/HRT on 

chromosome- 5, RAC-2 is a recessive resistant loci of A. 

thaliana accession Ksk-2 mapped on chromosome- 3. The 

resistant  gene WRR4 (White rust resistance) encodes a  

cytoplasmic  toll interleukin  receptor like nucleotide binding 

leucine rich repeat  receptor like protein(TIR-NB-LRR)  that 

confers a  dominant, broad -spectrum, white rust resistance in A. 

thaliana accession  columbia. This gene was mapped in 

chromosome 1. The WRR4 protein requires functional 

expression of the lipase like  protein EDS1
79,80

. 

 

Resistant towards Ralstonia solanacearum 

Ralstonia solanacearum  is the causal agent of bacterial wilt of 

many important agricultural crops such as  potato, tomato, 

banana, pepper  and even trees such as eucalyptus  etc.
81.

.  Two  

A.thaliana  genes RRS1-S and RRS1-R involved in resistant 

towards the Ralstonia solanacearum
82

. RRS1 was mapped on 

chromosome- 5
83.

 Arabidopsis thaliana  accessions  Ler ×Col-O 

accessions recombinant inbreed lines showed that  resistance 

was governed by at least three loci named as QRS1 

(Quantitative resistance to Ralstonia solanacearum) and QRS2 

on chromosome-2, QRS3 on chromosome- 5. ERECTA gene 

lies close to QRS1  mapped on chromosome 2
84

.  A.thaliana 

accessions Ws-O RRS1 and RPS4 function as resistant to 

Ralstonia solanacearum, C. higginsianum and Pseudomonas 

syringae pv tomato strainDC3000
85

. 

 

Resistant towards   Xanthomonas campestris 

Xanthomonas campestris PV campestris the causal agent of 

black rot crucifers
85

.
 
Four Quantitative resistant  trait  loci  

called  RXC1, RXC2, RXC3, RXC4 (Reaction to  Xanthomonas  

campestris) were identified through genetic analysis of A. 

thaliana Col-O×Ler recombinant inbreed lines. RXC1 loci was 

mapped on chromosome 2, a gene conferring tolerance to 

Xanthomonas  campestris  2D520, RXC2 loci was  mapped on 

chromosome 5, RXC3 loci was mapped on chromosome 5 and 

RXC4 loci was mapped on chromosome 2 of A. thaliana in  

above inbreed accessions
86

. Another gene loci was  identified in 

Arabidopsis against Xanthomonas  i.e. RXC5
87

. 

 

Resistant towards  Trichoplusia ni 

The quantitative trait loci in Trichoplusia ni is strongly correlate 

with higher glucosinolate levels 
.88..

 TASTY locus was found to 

discover in A.thaliana on a chromosome-1 to know about 

susceptibility status of recombinant inbreed lines
89

. A 

myrosinase  associated protein ESM1 loci was identified 

through map based cloning on chromosome -3 in A. thaliana  

landesberg  erecta xcolumbia  accessions inbreed lines and 

found to be insect resistance
90

. 

 

Resistant towards Leptosphaeria  maculans 

A blackleg  disease of  Brassica oilcrops  was  caused by  

Leptosphaeria  maculans  is a hemi biotrophic  fungi
91

 RLM1 

(Resistance against Leptosphaeria  maculans) and RLM2 were  

two  A. thaliana  TIR-NBS-LRR resistant genes effective 

against Leptosphaeria  maculans
92

. RLM1   resistant  loci  in 

Arabidopsis accessions  Col-O, Ws-O and Cvi-1 was  mapped 

on chromosome 1 and RLM2 resistant loci in  Col-0 ×Ler-O, 

and Ler-2×Cvi-1 was mapped on chromosome - 4. Loss of  two  

RLM1 and RLM2 resistance loci in  A.  thaliana Col-O x Ler-O 

inbreed lines showed susceptibility for  Leptosphaeria  

maculans
93

. 

 

Resistant towards Tobacco etch virus 

The Tobacco etch virus (TEV)-Arabidopsis model system for 

identification of host genes. From the model observation two 

points are identified i.e. first virus unable to encountered due to 

presence of resistant allele and second is the resistant genes act 

against a known viral genotype but not for polymorphic viral 

genotypes
94

. 

 

Three complex resistance loci RTM1 (Restricted to Tobacco 

etch virus movement) RTM2, RTM3 were  observed through 

mutational analysis in Arabidopsis accession Col-O ecotype. 

RTM2 resistant loci was mapped on chromosome-5 of A. 

thaliana Col-O ecotype.RTM2 was a multi domain 

configuration which was homologus to thermal shock proteins 

.RTM1 loci  was mapped on chromosome-1. RTM3 gene loci 

was mapped on chromosome 3 that encodes a new type of 

protein
95-98. 

 

Resistant towards Cucumber mosaic virus 

Mutation in ssi2 gene conferred enhanced resistant to cucumber 

mosaic virus in A. thaliana and is salicylic acid independent 

pathway
99

. The RCY1 in the A. thaliana ecotype C24 was 

associated with the hypersensitive response and mapped on 

chromosome- 5
100

. 
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Rresistant towards Turnip Crinkle Virus 

A dominant HRT gene confers  a hypersensitive  response to 

Turnip crinkle virus (TCV) had been cloned from  Arabidopsis 

ecotype Dijon(Di17) and  was a LZ-NBS-LRR class resistant  

gene .HRT signaling pathway in A.  thaliana is dependent on  

salicylic acid  and is independent of  NPR1, NDR1, ETR1, 

COI1 and perhaps of  EDS1 and PAD4
101

.  A locus in A. 

thaliana  Di17×Col-0  accession inbreed lines designated HRT 

mapped on chromosome 5 which confers  the ability to develop 

a  hypersensitive response after TCV inoculation
102

.
 

 

A. thaliana cryptochrome (CRY-2) and Phototropin (PHOT -2) 

gave stability during TCV infection
103

. Arabidopsis ecotype 

Dijon(Di17) was  regulated by presence of two host genes HRT 

and RRT  results development of  hypersensitive response and 

was salicylic acid dependent
104

. CRT1 was a GHKL ATPase  

resistance to turnip crinkle virus in A. thaliana  mediated 

through the HRT  by developing  HR  failed to control  virus 

replication
105

. 

 

Resistant towards cauliflower mosaic virus 

Genetic variants of Cauliflower mosaic virus (Camv) and A. 

thaliana were characterized to identify mild and severe 

symptoms. Infections of  a glabrous  mutant (gl1) of A.  thaliana  

ecotype columbia (Col-Ogl1)by 30 Camv isolates. Thirteen 

isolates failed to cause symptoms and a greater variety of 

symptom type was observed in a single. A. thaliana  ecotype  

infected with a typical  Camv  isolate Cabb B-JI
.105.

 Two A. 

thaliana ecotype Enkheim -2(En -2) and Bla -14 were  resistant 

to systemic infection by cauliflower mosaic virus. Cauliflower 

mosaic virus resistance by a single semi dominant gene called 

cauliflower mosaic virus resistance -1 located at chromosome-

1
106

. 

 

Resistant towards Tobacco ring spot nepo virus: 

Tobacco ring spot virus  resistance is display by many 

Arabidopsis ecotypes. TTR-1 (Tolerance to Tobacco ring spot 

virus -1 gene) encoding a TIR-NBS-LRR protein..TTR1 gene 

involved in SGT-dependent defense responses
107

.
 
TTR1 was 

mapped to chromosome 5
108

. 

 

Resistant towards Plum pox  poty virus and Spring 

beauty latent virus infection 
 

A. thaliana accession cvi-1 restrict to plum pox poty virus long 

distance movement controlled by a single recessive gene 

designated as  rpv1 which was mapped to chromosome -1
109

. In 

several accessions of A. thaliana ,symptom development in 

spring beauty latent virus (SBLV) were to designed a loci 

SSB1(Symtom development  by SBLV infection) which shown  

resistant activity .This semi dominant loci SSB1 was mapped to 

chromosome -5
110

. 

 

 

Resistant towards Fusarium oxysporum 

Many QTLs which were genetically complex control natural 

variation in A.thaliana  accessions  Bay-0 and Shahdara  

resiatnce to Botrytis cinerea. In  A.thaliana Ty-O x Col-O six 

dominant  RFO (resistance to Fusarium oxysporum) loci shows 

resistant activity towards Fusarium oxysporum..The name of six 

loci are RFO1 to RFO6 and might be represent more than one 

gene. The A.thaliana RFO loci were mapped on  five 

chromosomes such as RFO1, RFO2 mapped on chromosome-1, 

chromosome -3 contain RFO3 loci, chromosome -4 contain 

RFO4 loci ,chromosome- 5 contain RFO5 and RFO6 loci.RFO1 

loci was the largest contributor resistant  to fusarium  races  

identical with a previously known gene called as  WAKL 22
111

. 

A.  thaliana Thionin Thi2.1 gene over expression involved in 

resistance to Fusarium oxysporum
112

. 

 

Resistant towards Heterodera schachtii 

Heterodera are obligate sedentary endoparasites  of agricultural 

crops. The relationship between nematodes and their host were 

well established. Seventy four different ecotypes of Arabidopsis 

were screened for their susceptibility towards Heterodera 

schachtii and consider Arabidopsis as a host for plant parasitic 

nematodes will provide a model system for the molecular 

genetic analysis of this interaction
113

. Heterodera  schachtii  and 

root knot  Meloidogyne incognita  expression levels of  

pathogenesis related genes PR-1 to PR5 were  examined in the 

roots and leaves of A. thaliana. .The PR3 and PR4  are 

expressed in  jasmonic acid (JA)-dependent SAR.. The PR-

1,PR-2 and PR-5 were highly induced in roots as well as PR-3 is 

to a  lesser
114

. The use of Arabidopsis as a susceptible host in 

which to study the induction and formation of syncytia  by cyst 

nematodes will benefit greatly from the established expertise in 

Arabidopsis research .Arabidopsis  provides a genetically 

tractable model system for the study of nematode CLE 

signaling. as well as role in defense. HsCLE-1 and HsCLE- 2 

were  CLE like genes from Heterodera schachtii sharing highest 

similarity to Arabidopsis thaliana CLEs 1-7
115

,
116

.
 

 

Resistant towards Pythium irregulare 

The resistance to pythium does not  directly involve to the 

hypersensitive  response  but by  jasmonate and ethylene 

signaling pathways
117

. A. thaliana  mutant plants fad3-2, fad 7-2 

,fad8  were  deficient in jasomonate synthesis  to demonstrate 

that  jasmonate signaling  was essential  for  protection against 

the Pythium  mastophorum
118

. Six member genes of propep1-6 

was well studied in A. thaliana. Over expression of two family 

members propep-1and propep-2 enhances resistance of A. 

thaliana plants against the pathogen oomycete Pythium 

irregulare
119

. The 23aa peptide activates the transcription of 

defensin gene PDF1.2 and synthesis H2O2 and over expression 

of  Propep-1 confer resistance against a root pathogen  Pythium  

irregulare
120

.
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Resistant towards   Cladosporium  fulvum 

Receptor like proteins were leucine rich repeat proteins. In 

A.thaliana  genome contains approximately 59  RLP family  

genes. The 17 genes of this family  were  present on 

chromosome -1 including CLV2, TMM, RPP27 and other 12 

genes  were present on chromosome 2,16 number of genes on 

chromosome 3,8 number of  genes on chromosome- 4, 6 number 

of genes on chromosome -5
121

.
 

 

 

Resistant towards Alternaria  brassicicola 

Alternaria brassicicola with A.thaliana   interaction helps to 

identify genes  play an important role in resistance. Microarray 

experiment revealed  that 168 genes are up regulated  yet to be 

determined in resistance during an interaction between the A. 

thaliana ecotype col-0 and Alternaria brassicicola 
122..

A.thaliana RESURRECTION -1(RST1) gene which was 

mapped on chromosome- 3  play a major  role in defense. The 

RST1 gene of A.thaliana act as a negative regulator in jasmonic 

acid signaling
123

. 

 

 

 

 
Figure-1 

AT3G50450-RPW8.1 ; AT3G50460-RPW8.2; AT3G50470-RPW8.3; AT3G50480-RPW8.4; AT4G19040- EDR2; 

AT2G14610- PR1; AT3G54920- PMR6;  AT4G03550-PMR4; AT5G44420 PDF1.2; AT1G11310 PMR2; AT4G39030 EDS5; 

AT1G64280 NPR1; AT1G74710 EDS16 AT5G45250 RPS4; AT4G26090 RPS2; AT1G59870 PEN3; AT3G07040 

RPS3/RPM1; AT1G12220 RPS5; AT5G46470 RPS6; AT3G52430 PAD4; AT3G44480 RPP1;AT3G46530 

RPP13;AT5G43470 RPP8/HRT/RCY1; AT4G16950 RPP5; AT4G16860 RPP4; AT1G54470 RPP27; AT3G26470 RPW8 ; 

AT5G45260 RRS1; AT1G05760 RTM1; AT5G04890 RTM2; AT3G58350 RTM3; AT1G54040 TASTY/ESP; AT3G14210 

ESM-1; AT1G64070 RLM1;AT5G44870 TTR1; AT1G79670 RFO1; AT3G57260 PR2; AT3G12500 PR3; AT3G04720 PR4;  

AT1G75040 PR; AT1G08720 EDR1 

[The QTLs and Genes are distributed in five chromosomes of Arabidopsis thaliana. The Gene ID of diisease resistant genes from 

TAIR.(www.arabidopsis.org).The  QTL map was  based on gene  ID. 
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Arabidopsis thaliana Salicylic acid, Jasmonic acid and 

Ethylene response genes during pathogen infection: 

A.thaliana contains signaling molecules like salicylic acid, 

jasmonic acid and ethylene function in different ways. 

A.thaliana contains salicylic acid  is a critical mediator in  

innate immunity and plays an important role in limiting the 

growth and reproduction of the virulent powdery  mildew 

Golovinomyces  orontii  in A. thaliana
124

. In A. thaliana,  

salicylic acid accumulates in pathogen challenged  tissues and 

expression of pathogenesis  related  PR1,PR2 and PR5 genes. 

The A. thaliana  containing  NahG  were low level of  salicylic 

acid  contents compared  to the sid  (salicylic acid  induction 

deficient) mutants
125

. A. thaliana Sid mutants express PR2, PR5 

genes and accumulates camalexin during pathogen 

interaction
126

. Salicylic acid signaling require NPR1 which was 

a nuclear transported protein involved in defense gene activation  

during systemic acquired resistance 
127..

The A. thaliana  

NIM1/NPR1 mutant   was  isolated that  unavailed  the  network  

to establish systemic acquired resistance against Peronospora  

parasitica  due to downstream  signaling of salicylic acid 
128

,
.129..

A.thaliana contains a number of genes such as PAD4 

,EDS5,NPR1,SGTb1,EDR1 in salicylic acid signaling pathways 

contribute resistance to powdery mildews. A. thaliana atg2-2 

mutant required salicylic acid activating defense related genes 

resistance to Golovinomyces cichoracearum
13

. NPR1/NIM1 

acting as a positive regulator of defense responses during 

pathogen interaction.PAD4 involved in salicylic acid signaling 
131,132..

Two separate signaling branches are EDS1 and PAD4 

proteins with limited  homology to lipases and other requires 

NDR1
133.

The EDS1 and PAD4 pathway is associated with TIR-

NBS-LRR proteins and the NDR1 pathway was  typically 

associated with CC-NBS-LRR proteins. Snc1 was fully 

dependent on PAD4 but point mutation in Snc1 block the 

synthesis of  salicylic acid
134. .

PR1, PR2, PR5 were set of genes 

activated in response to salicylic acid signaling and PDF1.2, 

PR3, PR4 were activated in response to jasmonic acid signaling 

pathway
135

. .A. thaliana Coi1 or Pad3  mutants requires  

phytoalexin camalexin  and jasmonic acid  for resistance against 

Alternaria brassicicola
136

. In A. thaliana, the molecular cloning 

of genes involved in ethylene signaling had revealed a variety of 

signaling modules in the ethylene response pathways. Ethylene 

signaling in molecular and cellular details in  A. thaliana  will 

provide innovative tools for improving plant adaptability against 

pathogens. Ethylene receptors were membrane proteins and  

related to receptor proteins found in bacteria, algae and plants 

namely two component regulatory systems that initiates a series 

of  phosphorylation reactions in response to external stimuli.  In  

A.  thaliana, ethylene was  perceived  by ETR1, 

ETR2,ERS1,ERS2 and EIN4 five family 
137..

CTR1, a Raf  like 

kinase suppresses downstream ethylene responses  in the 

absence of ethylene and vice versa in presence of ethylene. 

Signal transduction and subsequent gene expression continue by 

EIN2 and EIN3. The first Arabidopsis ethylene mutant was etr1-

1
138..

Ethylene insensitive A. thaliana reacted similarly to 

infection by pythium  species and was identified  by the ein2-1 

mutants which were enhanced susceptibility. The etr1-1 mutants   

appeared to be as resistant as wild type Arabidopsis
139

. Ethylene 

insensitive ein 2-1 mutants showed reduced disease severity 

after inoculation with bacterial leaf pathogens Pseudomonas 

syringae or Xanthomonas campestris in A. thaliana
140

.
 

but 

Arabidopsis etr1 and etr2 mutants indicates enhanced 

susceptibility
141

. EIN2 was required the systemic induction of 

genes PDF1.2, PR3 and PR4 in the ethylene insensitive 

Arabidopsis mutant ein2-1. A. thaliana mutant ein2-1 shown 

enhanced susceptibility towards Botrytis cinerea than wild 

type
142

. Ethylene response factor-1(erf1) is a regulator of 

ethylene after pathogen attack in Arabidopsis and drives the 

activation of defense related genes such as pr4 and pdf1.2 and 

its  over expression  positively confers resistant to Fusarium  

oxysporum, Plectosphaerella cucumerina and  several 

necrotrophic fungi
143

.
 
Pdf1.2 regulated by apetala 2/ethylene 

response factor transcription factor ora59
144

. The Arabidopsis 

ein2-1 an ethylene insensitive mutant  shown delay  in  wilt 

disease development caused by the Ralstoinia  solanacearum
145

. 

During ethylene signaling, A. thaliana increases susceptibility to 

the Egyptian cotton worm Spodoptera literallis but not against 

diamond back moth Plutella  xylostella. The Arabidopsis 

hookless1 (hls1) and ein2 mutant  affects  ethylene signaling 

conferred  resistance  to  Egyptian cotton worm  Spodoptera  

littoralis
146

. ISR1 locus on chromosome 3 controlling 

Rhizobacteria such as Pseudomonas fluorescens WCS417r  

involved in ethylene signaling in A. thaliana
147

. In  A. thaliana 

mutant etr1-1 shown  enhanced resistant activity  against 

Verticillium dahlia due to increased accumulation of the PR1, 

PR2, PR5, GSTF1 (Glutathiones transferase), GSTU16, CHI-1, 

(Chitinase),CHI-2 and Myb 75 genes
 148. .

Jasmonic acid control 

defense gene expression through large scale transcriptional 

reprogramming. Jasmonic acid was necessary  for defense gene 

expression in response to various microbial pathogens and 

arthropod herbivores. Arabidopsis plants were showed 

expression of the jasmonic acid responsive genes lox2, pdf1.2 

and vsp  by Pseudomonas syringae pv tomato dc3000. Npr1 

found to be essential for salicylic acid mediated defense gene 

expression
.149.

 Npr1 was  a key regulatory pathogen in the 

systemic acquired resistance. In Arabidopsis systemic acquired 

resistance were effective through parallel activation of  npr1 

dependent  defense  response  against Pseudomonas syringae pv 

tomato 
150

.The interaction between npr1 and ethylene modulate 

in defense  response upon pathogen. Ethylene and jasmonic acid  

signaling  in the A. thaliana ssi 1 mutants affect the npr1 

independent  expression of pdf1.2 and pr1 leads to susceptibility 

towards  Pseudomonas syringae and  Peronospora parasitica
151

. 

Two jasmonate signaling mutants Jin1 and Jin4 (Jasmonate -

insensitive) shown increased in resistant activity in Arabidopsis 

upon treatment with biotrophic pathogen Pseudomonas syringae 

and necrotrophic pathogen Botrytis cinerae
152

. Due to lack in 

the production of jasmonic acid A. thaliana several fatty acid 

desaturase (fad3/fad7/fad8), coronatine insensitive 1. 

 

Coi1 and jasmonic acid  resistant-1(jar1), jin- 1 (jasmonate 

insensitive -1 gene) mutants shown high susceptibility to a 

variety of pathogens Botrytis cinerae, Fusarium oxysporum 
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,Pythium species ,Alternaria  brassicicola  and the bacterial 

pathogen Erwinia  carotovora  ,Pseudomonas syringae pv 

tomato  .
,154...

Jasmonic acid dependent genes like plant defensin 

1.2 (pdf1.2); thionin 2.1 (thi2.1), hevein like protein (hel) and 

chitinase b(chi-b) were  involved in Jasmonic acid  pathway 

dependent defense responses for resistant against   biotrophic 

fungus  E.cichoracearum,Pseudomonas syringae pv 

maucicola
.155.

The Arabidopsis gene coi -1 required for  

jasmonic acid signaling pathways
.156.. 

Ein2gene act as a defense 

response in Arabidopsis against Botrytis cinerea A subset of 

pathogen resistant genes in Arabidopsis comprising pr-3,pr-4 

and pr-12(pdf1.2) genes coregulate  the jasmonate and ethylene 

signaling pathways. These genes were encode antimicrobial 

proteins .Additional study on EIN2 and COI1 mutants confirm 

at least two separate signal transduction pathways is essential 

for resistance against  different pathogens , one that is salicylic 

acid dependent and other one was  jasmonic acid or ethylene –

dependent. Fumonisin, is a toxin produced by the fungus 

Fusarium moniliforme interplay between different signaling  

components in the control of hypersensitive  response
157

. Bos2, 

bos3 and bos4 (Botrytis cinerea susceptibility) mutants  

accumulate reduced levels of camalexin than wild type and 

responsiveness to ethylene and  jasmonate.Genetic evidence 

found that cev1(vsp1) stimulates both the jasmonic acid  and 

ethylene  signal pathways through coi1(Coronatine insensitive -

1), an essential component of the jasmonic acid  signaling 

pathways and etr1 encodes the ethylene receptor . The 

A.thaliana  mutants npr1,eds5,ein2 and jar1 disrupt the salicylic 

acid, jasmonic acid and ethylene and cpr1, cpr5, cpr6 mutants 

constitutively activate these pathways  identified by epistasis 

analysis
158

. 

 

Conclusion 

The identification of disease resistant genes and gene loci in A.  

thaliana   is an input knowledge to built  agriculture .The 

Resistance genes  from Arabidopsis are introduced in to 

different crop species and these varities of crop species are used 

in agriculture farming. In other way, our environment  should 

clean from pesticides ,herbicides and different poisonous 

chemicals used for pathogen killing in crop varieties. The 

disease resistant genes which were identified in Arabidopsis  

can help  to study of different protein classes related to other 

crop resistant gene loci encoding protein classes. The A.thaliana  

resistant genes involved in signaling pathways  is a source of 

finding for this same link in other crop varieties. Three basic 

knowledge can be obtained from mapping and analyzing the 

pathways involved in resistant genes are (A)Resistance(B) 

Susceptibility(C)Signaling network of genes. This presentation 

and findings help to develop agriculture . 
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