International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

The Role of Astrocytes in Alzheimer's disease

Author Affiliations

  • 1Physiology discipline, Human Biology division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
  • 2Department of Anatomy, School of Medicine, Taylors University, Lakeside Campus, Selangor, Malaysia
  • 3Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang, Selangor, Malaysia
  • 4Department of Preclinical Sciences, University Tunku Abdul Rahman, Faculty of Medicine, and Health Sciences, Jalan Sungai Long, Bandar Sungai Long, Kajang, Selangor, Malaysia
  • 5Anatomy discipline, Human Biology division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia

Int. Res. J. Biological Sci., Volume 12, Issue (3), Pages 17-20, November,10 (2023)

Abstract

Alzheimer's disease (AD) is a neurodegenerative condition that impairs cognition, causes memory loss, and alters a person's behaviour and personality. The deposit of amyloid-β (Aβ) plaques and hyperphosphorylated tau, which results in neurofibrillary tangles, in the brain are two important pathogenic characteristics of AD. Numerous investigations have determined and confirmed that astrocytes in AD have both neurotoxic and neuroprotective properties. The unique pathophysiological mechanisms and roles of these cells remain unknown despite several explanatory theories. The review outlines the neuroprotective roles of astrocytes, like as inflammation control and Aβ elimination. It concludes by highlighting the intricate interactions that exist between astrocyte activities and AD pathogenesis. Research on reactive astrocytes' balance between neuroprotection and neurotoxicity is still ongoing. Although there is now no treatment for AD, a better understanding of these pathways and therapeutic approaches that target astrocytes may be the key to developing more potent therapies for this debilitating illness.

References

  1. Cummings, J., Lee, G., Nahed, P., Kambar, M. E. Z. N., Zhong, K., Fonseca, J., & Taghva, K. (2022)., Alzheimer’s disease drug development pipeline., Alzheimer’s & Dementia (New York, N. Y.), 8(1), e12295. https://doi.org/10.1002/trc2.12295
  2. Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A. C., Campos-Martin, R., Grenier-Boley, B., Andrade, V., Holmans, P. A., Boland, A., Damotte, V., van der Lee, S. J., Costa, M. R., Kuulasmaa, T., Yang, Q., de Rojas, I., Bis, J. C., … CHARGE. (2022)., New insights into the genetic etiology of Alzheimer’s disease and related dementias., Nature Genetics, 54(4), 412–436. https://doi.org/10.1038/s41588-022-01024-z
  3. Shakir, M. N., & Dugger, B. N. (2022)., Advances in deep neuropathological phenotyping of Alzheimer disease: Past, present, and future., Journal of Neuropathology and Experimental Neurology, 81(1), 2–15. https://doi.org/10.1093/jnen/nlab122
  4. Hur, J.-Y. (2022)., Γ-secretase in Alzheimer’s disease., Experimental & Molecular Medicine, 54(4), 433–446. https://doi.org/10.1038/s12276-022-00754-8
  5. Murphy, M. P., & LeVine, H. (2010)., Alzheimer’s Disease and the Amyloid-β Peptide., Journal of Alzheimer’s Disease: JAD, 19(1), 311–323. https://doi.org/10.3233/jad-2010-1221De
  6. Kurkinen, M., Fułek, M., Fułek, K., Beszłej, J. A., Kurpas, D., & Leszek, J. (2023)., The amyloid cascade hypothesis in Alzheimer’s disease: Should we change our thinking?., Biomolecules, 13(3), 453. https://doi.org/10.3390/biom13030453
  7. Heneka, M. T., Kummer, M. P., & Latz, E. (2014)., Innate immune activation in neurodegenerative disease., Nature Reviews. Immunology, 14(7), 463–477. https://doi.org/10.1038/nri3705
  8. Sobue, A., Komine, O., & Yamanaka, K. (2023)., Neuroinflammation in Alzheimer’s disease: microglial signature and their relevance to disease., Inflammation and Regeneration, 43(1), 1-6. https://doi.org/10.1186/s41232-023-00277-3
  9. Chen, Z. R., Huang, J. B., Yang, S.-L., & Hong, F.-F. (2022)., Role of cholinergic signaling in Alzheimer’s disease., Molecules (Basel, Switzerland), 27(6), 1816. https://doi.org/10.3390/molecules27061816
  10. Takeuchi, H. (2010)., Neurotoxicity by microglia: Mechanisms and potential therapeutic strategy., Clinical and Experimental Neuroimmunology, 1, 12–21. https://doi.org/10.1111/j.1759-1961.2009.00001
  11. Ortiz-Sanz, C., Balantzategi, U., Quintela-López, T., Ruiz, A., Luchena, C., Zuazo-Ibarra, J., Capetillo-Zarate, E., Matute, C., Zugaza, J. L., & Alberdi, E. (2022)., Amyloid β / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease., Cell Death & Disease, 13(3), 253. https://doi.org/10.1038/s41419-022-04687-y
  12. Sherwood, C. C., Stimpson, C. D., Raghanti, M. A., Wildman, D. E., Uddin, M., Grossman, L. I., Goodman, M., Redmond, J. C., Bonar, C. J., Erwin, J. M., & Hof, P. R. (2006)., Evolution of increased glia–neuron ratios in the human frontal cortex., Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13606–13611. https://doi.org/10.1073/pnas. 0605843103
  13. Peteri, U. K., Niukkanen, M., & Castrén, M. L. (2019). Astrocytes in Neuropathologies Affecting the Frontal Cortex., Frontiers in Cellular Neuroscience., 13, 44. https://doi.org/10.3389/fncel.2019.00044
  14. Khakh, B. S., & Sofroniew, M. V. (2015)., Diversity of astrocyte functions and phenotypes in neural circuits., Nature Neuroscience, 18(7), 942–952. https://doi.org/10.1038/nn.4043
  15. Frost, G. R., & Li, Y. M. (2017)., The role of astrocytes in amyloid production and Alzheimer’s disease., Open Biology, 7(12), 170228. https://doi.org/10.1098/ rsob.170228
  16. Fakhoury, M. (2018)., Microglia and astrocytes in Alzheimer’s disease: Implications for therapy., Current Neuropharmacology, 16(5), 508–518. https://doi.org/10.2174/1570159x15666170720095240
  17. Kwon, H. S., & Koh, S.H. (2020)., Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes., Translational Neurodegeneration, 9(1), 1-12. https://doi.org/10.1186/s40035-020-00221-2
  18. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W.-S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., … Barres, B. A. (2017)., Neurotoxic reactive astrocytes are induced by activated microglia., Nature, 541(7638), 481–487. https://doi.org/10.1038/nature21029
  19. Pham, C., Hérault, K., Oheim, M., Maldera, S., Vialou, V., Cauli, B., & Li, D. (2021)., Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca2+ alteration and multiphasic transmitter release., Acta Neuropathologica Communications, 9(1), 9-19. https://doi.org/10.1186/s40478-021-01146-1
  20. Verkhratsky, A., Olabarria, M., Noristani, H. N., Yeh, C.-Y., & Rodriguez, J. J. (2010)., Astrocytes in Alzheimer’s disease., Neurotherapeutics: The Journal of the American Society for Experimental Neuro Therapeutics, 7(4), 399–412. https://doi.org/10.1016/j.nurt.2010.05.017
  21. Orre, M., Kamphuis, W., Osborn, L. M., Jansen, A. H. P., Kooijman, L., Bossers, K., & Hol, E. M. (2014)., Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction., Neurobiology of Aging, 35(12), 2746–2760. https://doi.org/10.1016/j.neurobiolaging.2014.06.004
  22. Giovannoni, F., & Quintana, F. J. (2020)., The role of astrocytes in CNS inflammation., Trends in Immunology, 41(9), 805–819. https://doi.org/10.1016/j.it.2020.07.007
  23. Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006)., Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews., Neuroscience, 7(1), 41–53. https://doi.org/10.1038/nrn1824
  24. Zhao, J., O’Connor, T., & Vassar, R. (2011)., The contribution of activated astrocytes to Aβ production: Implications for Alzheimer’s disease pathogenesis., Journal of Neuroinflammation, 8(1). https://doi.org/10.1186/1742-2094-8-150
  25. Hong, H. S., Hwang, E. M., Sim, H. J., Cho, H.-J., Boo, J. H., Oh, S. S., Kim, S. U., & Mook-Jung, I. (2003)., Interferon γ stimulates β-secretase expression and sAPPβ production in astrocytes., Biochemical and Biophysical Research Communications, 307(4), 922–927. https://doi.org/10.1016/s0006-291x(03)01270-1
  26. Jiwaji, Z., Tiwari, S. S., Avilés-Reyes, R. X., Hooley, M., Hampton, D., Torvell, M., Johnson, D. A., McQueen, J., Baxter, P., Sabari-Sankar, K., Qiu, J., He, X., Fowler, J., Febery, J., Gregory, J., Rose, J., Tulloch, J., Loan, J., Story, D., … Hardingham, G. E. (2022)., Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology., Nature Communications, 13(1). https://doi.org/10.1038/s41467-021-27702-w