International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A Review: Cellulose and Cellulase drive sustainable biomass conversion

Author Affiliations

  • 1Bhagwan Mahavir College of Basic and Applied Science, Surat, Gujarat, India
  • 2Bhagwan Mahavir College of Basic and Applied Science, Surat, Gujarat, India

Int. Res. J. Biological Sci., Volume 12, Issue (3), Pages 10-16, November,10 (2023)

Abstract

Due to its high cellulose content and abundance in agriculture and forestry leftovers, cellulosic biomass is a viable feedstock. Cellulose, the most prevalent biopolymer on Earth, is a complex carbohydrate polymer that serves as the structural backbone of plant cell walls. However, there is still a considerable difficulty in the effective conversion of cellulose into biofuels and other products with added value. Cellulase enzymes, which are produced by a variety of microorganisms and some plants, are essential for the breakdown of cellulose. Through an intricate enzymatic mechanism, these enzymes have the singular capacity to hydrolyse cellulose into fermentable carbohydrates like glucose. By creating a sustainable and eco-friendly method for the manufacture of biofuel, the discovery and use of cellulases have revolutionized the conversion of biomass. Microbial cellulases are an essential tool for converting cellulosic biomass into useful products, providing environmentally friendly options for chemicals, materials, and energy. Cellulase production, optimisation, and application are areas that require ongoing research and technical development if we are to realise the full potential of these enzymes and accelerate the transition to a more resource-conscious and sustainable future.

References

  1. Scott G. W. and Kafrawy F. A. (1992)., Cellulose: The Structure and Properties of this Versatile Biomaterial., Chemistry in Australia, 59(10), 18-21, 1992.
  2. Iglesias-Montoro J. C., Arregui-Mena A. J. and A. J. López-Pérez (2021). Cellulose-Based Materials for Tissue Engineering Applications., Materials, 14(1), 132, 2021., undefined
  3. Bismarck A. and Aranberri-Askargorta A. (2018)., Cellulose-Based Materials: From Nature to Applications., Woodhead Publishing.
  4. Payen, A. (1838)., Mémoire sur la composition du tissu propre des plantes et du ligneux., Comptes rendus, 7(lu 17 décembre 1838), 1052-1056
  5. Dashtban, M., Schraft, H., & Qin, W. (2020)., Fungal bioconversion of lignocellulosic residues; opportunities & perspectives., International Journal of Biological Macromolecules, 5(6), 154, 1256-1266.
  6. Sindhu, R., Binod, P., & Pandey, A. (2016)., Biological pretreatment of lignocellulosic biomass – An overview., Bioresource Technology, 199, 76-82.
  7. Habibi, Y. (2014)., Key advances in the chemical modification of nanocelluloses., Chemical Society Reviews, 43(5), 1519-1542
  8. Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011)., Cellulose-based bio-and nanocomposites: A review., International journal of polymer science.
  9. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011)., Nanocelluloses: a new family of nature based materials., Angewandte Chemie International Edition, 50(24), 5438-5466.
  10. Chang, C., & Zhang, L. (2011)., Cellulose-based hydrogels: Present status and application prospects., Carbohydrate polymers, 84(1), 40-53.
  11. Saxena, Rohit, et al. (2017)., Bioconversion of cellulose for sustainable production of biofuels: a review., Renewable and Sustainable Energy Reviews, 79, 1116-1129.
  12. Ockerman, H. W. (1991)., Food science sourcebook., Van No strand Reinhold.
  13. Salameh, Y. (2009)., Methods of Extracting Cellulosic Material from Olive Pulp., Doctoral dissertation, An-Najah National University.
  14. Kian, L. K., Saba, N., Jawaid, M., Alothman, O. Y., & Fouad, H. (2020)., Properties and characteristics of nanocrystalline cellulose isolated from olive fiber., Carbohydrate polymers, 241, 116423.
  15. Bhatia, S. K., Kim, S. H., Yoon, J. J., & Yang, Y. H. (2017)., Current status and strategies for second generation biofuel production using microbial systems., Energy Conversion and Management, 148, 1142-1156.
  16. Li, J., Henriksson, G., & Gellerstedt, G. (2007)., Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion., Bioresource Technology, 98(16), 3061-3068
  17. Seo, Y. B., Kim, H. J., & Bhatia, S. K. (2019)., Advances in cellulose extraction and its environmental impact., Advances in Bioenergy and Bioproducts, 125-145. Springer.
  18. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005)., Cellulose: Fascinating biopolymer and sustainable raw material., Angewandte Chemie International Edition, 44(22), 3358-3393.
  19. Belgacem, M. N., & Gandini, A. (2008)., The surface modification of cellulose fibers for use as reinforcing elements in composite materials. Composite Interfaces, 15(1-2), 9-23., undefined
  20. Kaushik, A., & Singh, M. (2011)., Cellulose fibers: A review of the developments in structure, morphology, and applications., Polymer-Plastics Technology and Engineering, 50(6), 543-562.
  21. Nandi, S. K., Kundu, B., Basu, D., & Roy, S. (2010)., Development of novel cellulose acetate-silver nanoparticle composite for effective antibacterial applications., Journal of Applied Polymer Science, 115(5), 2904-2912.
  22. Liu, L., Fishman, M. L., Hicks, K. B., & Kende, M. (2010)., Cellulose-based materials as hydrophilic matrices for active release., Journal of Applied Polymer Science, 115(5), 2479-2487.
  23. Guo, X., & Zhang, X. (2012)., Cellulose derivatives as water-retention agents in cement-based materials: A review., Cellulose, 19(5),
  24. Rehman, S., Aslam, H., Ahmad, A., Khan, S. A., & Sohail, M. (2014)., Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreusunder SSF of banana peels., Brazilian journal of microbiology, 45, 1485-1492.
  25. Adrio, J. L., &Demain, A. L. (2014)., Microbial enzymes: tools for biotechnological processes., Biomolecules, 4(1), 117-139.
  26. Gurung, N., Ray, S., Bose, S., & Rai, V. (2013)., A broader view: microbial enzymes and their relevance in industries, medicine, and beyond., BioMed research international.
  27. Gusakov, A. V., Berlin, A. G., Popova, N. N., Okunev, O. N., Sinitsyna, O. A., & Sinitsyn, A. P. (2000)., A comparative study of different cellulase preparations in the enzymatic treatment of cotton fabrics., Applied biochemistry and biotechnology, 88(1), 119-126.
  28. Belghith, H., Ellouz-Chaabouni, S., & Gargouri, A. (2001)., Biostoning of denims by Penicillium occitanis (Pol6) cellulases., Journal of biotechnology, 89(2-3), 257-262.
  29. Maurer, K. H. (1997)., Development of new cellulases., Surfactant science series, 175-202.
  30. Kottwitz, B., & Schambil, F. (2005)., U.S. Patent Application No. 10/897,898.,
  31. Buchert, J., Suurnäkki, A., Tenkanen, M., &Viikari, L. (1996)., Enzymatic characterization of pulps.,
  32. Mandels, M., & Reese, E. T. (1957)., Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals., Journal of bacteriology, 73(2), 269-278.
  33. Meyer, K. H. (1911)., Zur Kenntnis des Anthracens. I. Über Anthranol und Anthrahydrochinon., Justus Liebigs Annalen derChemie, 379(1), 37-78.
  34. Coutinho, P. M. (1999)., Carbohydrate-active enzymes: an integrated database approach., Recent advances in carbohydrate bioengineering.
  35. Chun, S., Gopal, J., & Muthu, M. (2021)., Antioxidant activity of mushroom extracts/polysaccharides—Their antiviral properties and plausible antiCOVID-19 properties., Antioxidants, 10(12), 1899.
  36. Doi, R. H. (2008)., Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers., Annals of the New York Academy of Sciences, 1125(1), 267-279.
  37. Dasgupta, S. (2019)., Comparing the Start-Up and Operation of Conventional and Granular Activated Sludge Reactors., Doctoral dissertation, The University of Utah.
  38. Kurosawa, K., &Ishii, M. (2017)., Expanding the potential of thermophilic Bacillus and Geobacillus species for bio-based production., Journal of bioscience and bioengineering, 124(6), 637-643.
  39. Lewis, G. E., Hunt, C. W., Sanchez, W. K., Treacher, R., Pritchard, G. T., & Feng, P. (1996)., Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers., Journal of Animal Science, 74(12), 3020-3028.
  40. GALANTE, Y. M., DE CONTI, A. L. B. E. R. T. O., & MONTEVERDI, R. (1998)., Application of Trichoderma enzymes., Trichoderma and Gliocladium, 2: Enzymes, Biological Control and commercial applications, 2, 327.
  41. Harman, G. E., & Kubicek, C. P. (Eds.). (1998)., Trichoderma and Gliocladium., volume 2: Enzymes, biological control and commercial applications (Vol. 2). CRC Press.
  42. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., ... & Smyth, W. F. (2001)., Microbial decolourisation and degradation of textile dyes., Applied microbiology and biotechnology, 56, 81-87.
  43. Zaldivar, J., Nielsen, J., & Olsson, L. (2001)., Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration., Applied microbiology and biotechnology, 56(1), 17-34.
  44. Sheehan, J., & Himmel, M. (1999)., Enzymes, energy, and the environment: a strategic perspective on the US Department of Energy, Biotechnology Progress, 15(5), 817-827.
  45. Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002)., Microbial cellulose utilization: fundamentals and biotechnology., Microbiology and molecular biology reviews, 66(3), 506-577.
  46. Poulsen, O. M., & Petersen, L. W. (1988)., Growth of Cellulomonas sp. ATCC 21399 on different polysaccharides as sole carbon source induction of extracellular enzymes., Applied microbiology and biotechnology, 29(5), 480-484.
  47. Rajoka, M. I., & Malik, K. A. (1997)., Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates., Bioresource Technology, 59(1), 21-27
  48. Ng, T. K., & Zeikus, J. G. (1982)., Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum., Journal of bacteriology, 150(3), 1391-1399.
  49. Thurston, B., Dawson, K. A., & Strobel, H. J. (1993)., Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus., Applied and Environmental Microbiology, 59(8), 2631-2637.
  50. Van Peij, N. N., Gielkens, M. M., de Vries, R. P., Visser, J., & de Graaff, L. H. (1998)., The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger., Applied and Environmental Microbiology, 64(10), 3615-3619.
  51. Mandels, M. (1985)., Fungal cellulase and microbial decomposition of cellulosic fibres., Dev Ind Microbiol, 5, 5-20.
  52. Kotchoni, O. D., Shonukan, O. O., & Gachomo, W. E. (2003)., Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression., African journal of biotechnology, 2(6), 140-146.
  53. Tuomela, M., Vikman, M., Hatakka, A., &Itävaara, M. (2000)., Biodegradation of lignin in a compost environment: a review., Bioresource technology, 72(2), 169-183.
  54. Xia, L., & Cen, P. (1999)., Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry., Process Biochemistry, 34(9), 909-912.
  55. Belghith, H., Ellouz-Chaabouni, S., & Gargouri, A. (2001)., Biostoning of denims by Penicillium occitanis (Pol6) cellulases., Journal of biotechnology, 89(2-3), 257-262.
  56. Bhat, M. K. (2000)., Cellulases and related enzymes in biotechnology., Biotechnology advances, 18(5), 355-383.
  57. Cortez, J. M., Ellis, J., & Bishop, D. P. (2001)., Cellulase finishing of woven, cotton fabrics in jet and winch machines., Journal of Biotechnology, 89(2-3), 239-245.
  58. Kvietok, L. L., Trinh, T., & Hollingshead, J. A. (1995)., U.S. Patent No. 5,445,747., Washington, DC: U.S. Patent and Trademark Office.
  59. Andersen, L. D. (2000)., U.S. Patent No. 6,051,414., Washington, DC: U.S. Patent and Trademark Office
  60. Galante, Y. M., & Formantici, C. (2003)., Enzyme applications in detergency and in manufacturing industries., Current organic chemistry, 7(13), 1399-1422.
  61. Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005)., Microbial cellulases-production, applications, and challenges.,
  62. Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005)., Microbial cellulases-production, applications, and challenges.,
  63. Kottwitz, B., & Schambil, F. (2005)., U.S. Patent Application No. 10/897,898.,
  64. Kinet, R., Destain, J., Hiligsmann, S., Thonart, P., Delhalle, L., Taminiau, B., ... & Delvigne, F. (2015)., Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach., Bioresource technology, 189, 138-144.
  65. Gurumurthy, D. M., & Enleagued, S. E. (2012)., Molecular characterization of industrially viable extreme thermostable novel alpha-amylase of geobacillus sp Iso5 Isolated from geothermal spring., J. Pure Appl. Microbiol, 6, 1759-1773.
  66. Juturu, V., & Wu, J. C. (2014)., Microbial cellulases: engineering, production and applications., Renewable and Sustainable Energy Reviews, 33, 188-203