International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Yield performance and fruit characteristics of tomato (Solanum lycopersicum L.) genotypes in a high rainfall region

Author Affiliations

  • 1Department of Plant Science and Biotechnology, Rivers State University, PMB 5080, Port Harcourt, Rivers State, Nigeria
  • 2Department of Plant Science and Biotechnology, Rivers State University, PMB 5080, Port Harcourt, Rivers State, Nigeria
  • 3Department of Plant Science and Biotechnology, Rivers State University, PMB 5080, Port Harcourt, Rivers State, Nigeria

Int. Res. J. Biological Sci., Volume 12, Issue (2), Pages 17-28, August,10 (2023)

Abstract

This study was to evaluate adaptation in vegetative, phenological and yield traits of five tomato genotypes (F1 hybrid Thorgal, NHTO 0294, NHTO 0201, B52 and Cameroun) to conditions in a high rainfall region at the Botanical Garden of the Plant Science and Biotechnology Department of Rivers State University, Port Harcourt, Rivers State, Nigeria. Seeds of five genotypes were nursed separately in plastic containers measuring 950cubic cm for seven weeks and transplanted into 55 x 45 x 45 cm polythene bags containing 10kg sandy-loam soil at one plant per bag. The bags were set out in a Completely Randomized Design in an open field with six replicates. Watering and weeding were carried out when necessary. Collected data were height of plant, number of leaves/plant, number of branches/plant, number of flower clusters/plant, days to 50% flowering, days to 50% fruiting, and days to 50% ripening/maturity. Others included quantity of fruits/plant, fruit length, fruit diameter, fruit weight, fruit shape index and overall fruit yield. The results showed that differences were significant (P=0.05) for number of branches, fruit weight, number of fruits/plant and fruit diameter with B52 having the highest number of 8 branches and 9 fruits/plant while Cameroun and F1 Thorgal had the least number of 2 branches each. Cameroun had the least number of one fruit/plant. The F1 hybrid Thorgal had the largest fruit diameter (4.4 cm) and highest fruit weight (66.9g). Other parameters studied (plant height, number of leaves, number of flower clusters, days to 50% flowering, fruiting, and maturity) did not differ significantly among tomato genotypes. The F1 Thorgal genotype is recommended for tomato production in Port Harcourt being well adapted and producing fruits almost three times bigger than fruits of other tomato genotypes.

References

  1. Mujtaba, A. and Masud, T. (2014)., Enhancing Post harvest storage life of tomato (Lycopersiconesculentum Mill.) Cv. Rio Grande Using Calcium Chloride., American-Eurasian Journal of Agriculture Environment and Science, 14(2), 143-149.
  2. Pinheiro, J., Alegria, C., Abreu, M., Sol, M., Gonçalves, E. M., & Silva, C. L. (2015)., Postharvest Quality of Refrigerated Tomato Fruit (S olanum lycopersicum, cv. Z inac) at Two Maturity Stages Following Heat Treatment., Journal of Food Processing and Preservation, 39(6), 697-709.
  3. Beckles, D. M. (2012)., Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit., Postharvest Biology and Technology, 63(1), 129-140.
  4. Wokoma, E. C. W. (2008)., Preliminary Report on Diseases of Tomato in Choba, Rivers State., Journal of Applied Sciences and Environmental Management, 12(3), 117-121.
  5. Bita, C. E., & Gerats, T. (2013)., Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops., Frontiers in plant science, 4, 273.
  6. Ajayi, A. M., & Hassan, G. F. (2019)., Response of selected tomato (Solanum lycopersicum L.) cultivars to on-field biotic stress., Journal of Agricultural and Crop Research, 7(3), 38-46. doi: https://doi.org/10.33495/jacrn v7i3.19.110
  7. Chaudhary, J., Khatri, P., Singla, P., Kumawat, S., Kumari, A., Vinaykumar, R., Vikram, A., Jindal, S. K., Kardile, H., Kumar, R., Sonah, H., and Deshmukh, R. (2019)., Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato., Biology, 8(90), 1-19. doi:10.3390/biology8040090
  8. Onyia, V. N., Chukwudi, U. P., Ogwudu, V. C., Atugwu, A. I., Eze, S. C., Ene, C. O., & Umeh, S. (2019)., Evaluation of Tomato Genotypes Growth, Yield, and Shelf Life Enhancement in Nigeria., Journal of Agricultural Science and Technology, 21(1), 143-152.
  9. Ibitoye, D., Kolawole, A., & Feyisola, R. (2020, December)., Assessment of wild tomato accessions for fruit yield, physicochemical and nutritional properties under a rain forest agro-ecology., In Genetic Resources, 1(2), 1-11.
  10. Domínguez, I., Ferreres, F., del Riquelme, F. P., Font, R., & Gil, M. I. (2012)., Influence of preharvest application of fungicides on the postharvest quality of tomato (Solanum lycopersicum L.)., Postharvest biology and technology, 72, 1-10.
  11. Martínez‐Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002)., Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum)., Journal of the Science of Food and Agriculture, 82(3), 323-330.
  12. Aoun, A. B., Lechiheb, B., Benyahya, L., & Ferchichi, A. (2013)., Evaluation of fruit quality traits of traditional varieties of tomato (Solanum lycopersicum) grown in Tunisia., African Journal of Food Science, 7(10), 350-354.
  13. Kanneh, S. M., Quee, D. D., Ngegba, P. M., & Musa, P. D. (2017)., Evaluation of tomato (Solanum lycopersicum L.) genotypes for horticultural characteristics on the upland in Southern Sierra Leone., Journal of Agricultural Science, 9(6), 213-213.
  14. Oladitan, T. O., & Oluwasemire, K. O. (2018)., Influence of weather condition on selected tomato varieties in response to season of sowing in Akure, a rainforest zone of Nigeria., Art Human Open Acc. J, 2(6), 422-426.
  15. Agele, S. O., Iremiren, G. O., & Ojeniyi, S. O. (2011)., Evapotranspiration, Water Use Efficiency and Yield of Rainfed and Irrigated Tomato., International Journal of Agriculture & Biology, 13(4).
  16. Bergougnoux, V. (2014)., The history of tomato: from domestication to biopharming., Biotechnology advances, 32(1), 170-189.
  17. Aniso, J., Hamadina, E. I., & Hamadina, M. K. (2015)., Germination and Vegetative Growth of Selected Hybrid Tomato (Lycopersicum esculentum Mill.) Cultivars under Hot and Wet Environmental Conditions in Rivers State Nigeria., Journal of Plant Sciences, 3(2), 99-105.
  18. Malyse, M. C. (2021)., Rainfall variability and adaptation of tomatoes farmers in santa: northwest region of Cameroon., In African Handbook of Climate Change Adaptation. pp. 699-711. Cham: Springer International Publishing.
  19. Ghana Guodaar, L. (2015)., Effects of climate variability on tomato crop production in the Offinso North District of Ashanti region (Doctoral dissertation).,
  20. McCrea, S. (2005)., Why blossoms of some vegetables fail to set fruit., Washington State Univ. Spokane County Ext. http://extension.wsu.edu/spokane/wp-content/uploads/ sites/33/2017/07/C148-Why-Blossoms-Fail-11.
  21. Ozores-Hampton, M., Kiran, F., & McAvoy, G. (2012)., Blossom Drop, Reduced Fruit Set, and Post-Pollination Disorders in Tomato., HS1195/HS1195, 7/2012. EDIS, 2012(7).
  22. Whiting, D., O’Meara, C. and Wilson, C. (2012)., Growing Tomatoes., Colorado State Univ. Ext. http://www.ext. colostate.edu/mg/gardennotes/717.pdf
  23. Sato, S., Peet, M. M., & Thomas, J. F. (2002). Determining critical pre‐and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany, 53(371), 1187-1195., undefined, undefined
  24. Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006)., Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development., Annals of botany, 97(5), 731-738.
  25. Biratu, W. (2018)., Review on the effect of climate change on tomato (Solanum Lycopersicon) production in africa and mitigation strategies., J Nat Sci Res, 8(5), 2225-0921.
  26. Johkan, M., Oda, M., Maruo, T., & Shinohara, Y. (2011)., Crop production and global warming., Global warming impacts-case studies on the economy, human health, and on urban and natural environments, 139-152.
  27. Giorno, F., Wolters-Arts, M., Mariani, C., & Rieu, I. (2013)., Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development., Plants, 2(3), 489-506.
  28. Snyder, R. G. (1828)., Greenhouse tomato handbook Mississippi State Univ., Ext. Serv. Publ.
  29. Peet, M., Sato, S., Clément, C. and Pressman, E. (2002)., Heat stress increases sensitivity of pollen, fruit and seed production in tomatoes (Lycopersiconesculentum Mill.) to non-optimal vapor pressure deficits., Int. Hortic. Congr.: Environ. Stress Hortic. Crop.,618, 209–215.
  30. Huang, Y., Li, Y., & Wen, X. (2011)., The effect of relative humidity on pollen vigor and fruit setting rate of greenhouse tomato under high temperature condition., Acta Agric. Boreali-Occident. Sin, 11, 1-20.
  31. Subedi, N., Gilbertson, R. L., Osei, M. K., Cornelius, E., & Miller, S. A. (2014)., First report of bacterial wilt caused by Ralstonia solanacearum in Ghana, West Africa., Plant disease, 98(6), 840-840.
  32. Keatinge, J. D. H., Ledesma, D. R., Keatinge, F. J. D., & Hughes, J. A. (2014)., Projecting annual air temperature changes to 2025 and beyond: implications for vegetable production worldwide., The Journal of Agricultural Science, 152(1), 38-57.
  33. Osei, M. K., Bonsu, K. O., Agyeman, A., & Choi, H. S. (2014)., Genetic diversity of tomato germplasm in Ghana using morphological characters.,
  34. Leke, W. (2015)., Begomovirus disease complex: emerging threat to vegetable production systems of West and Central Africa., Agriculture and Food Security, 4(1), 1-14.
  35. Ogunsola, E. (2021)., Tomato production and associated stress: a case of African climate., Single Cell Biology, 10, 3.
  36. Boulard, T., Raeppel, C., Brun, R., Lecompte, F., Hayer, F., Carmassi, G. and Gaillard, G. (2011)., Environmental impact of greenhouse tomato production in France., Agronomy for Sustainable Development, 31(4), 757-777.
  37. Viuda-Martos, M., Sanchez-Zapata, E., Sayas-Barberá, E., Sendra, E., Perez- Alvarez, J.A., andFernández-López, J. (2014)., Tomato and tomato by products. Human health benefits of lycopene and its application to meat products: A review., Critical Reviews in Food Science and Nutrition, 54(8), 1032-1049.
  38. Ochar, K. (2015)., Studies on Genetic Variability in Agronomic and Fruit Quality Traits among Some Tomato (Solanum lycopersicumL.) Genotypes., University of Ghana.
  39. Ugonna, C. U, Jolaoso, M. A. and Onwualu, A. P. (2015)., Tomato Value Chain in Nigeria: Issues, Challenges and Strategies., Journal of Scientific Research& Reports, 7(7), 501-515.
  40. Iken, J.E. and Anusa, A. (2004)., Maize Research and Production in Nigeria., African Journal of Biotechnology, 3(6), 302-307.
  41. Lokonga, O. and Tonganga, K. (2020)., Influence of Decomposed Wood Sawdust on Growth and Yield of Foreign F1 (Thorgal and Mongal) Hybrid Varieties of Tomato (Solanumlycopersicum L.) Grown Under Kisangani Shelter (D.R Congo)., Scholars Bulletin, 6(5), 105-122.
  42. Alia, M. E., Karimb, M. R., Talukderc, F. U., & Rahmanc, M. S. (2020)., Growth and yield responses of tomato (Lycopersicon esculentum Mill.) under different combinations of planting times and fertilizers., Reviews in Food and Agriculture, 1(2), 74-81.
  43. Dunsin, O., Agbaje, G. O., Aboyeji, C. M., & Gbadamosi, A. A. (2016)., Comparison of growth, yield and fruit quality performance of tomatoes varieties under controlled environment condition of the southern Guinea savannah., American-Eurasian J. Agric. & Environ. Sci., 16(10), 1662-1665.
  44. Ketema, W., & Beyene, D. (2021)., Adaptability study and evaluation of improved varieties of tomato (Lycopersicon esculentum L.) under irrigation for their yield and yield components in east Wollega, western Ethiopia., Int. J. Adv. Res. Biol. Sci, 8(7), 118-125.
  45. Dufera, J. T. (2013)., Evaluation of agronomic performance and lycopene variation in Tomato (Lycopersicon esculantum Mill.) genotypes in Mizan, southwestern Ethiopia., World Applied Sciences Journal, 27(11), 1450-1454.
  46. Ugwuanyi, P. O., Nwankwo, O. G., Adinde, J. O., Anieke, U. J., Ukwuani, C. M., & Aniakor, A. C. (2016)., Evaluation of performance diversity among four determinate tomato (Lycopersicon esculentum Mill.) varieties grown under high tunnel in iwollo, south eastern nigeria., Int. J. Curr. Res. Biosci. Plant Biol, 3(10), 49-56.
  47. Sanjida, M., Howlader, J., Akon, M. R., & Ahmed, T. (2020)., Effects of varieties and boron on growth and yield of summer tomato., Asian J Crop, 4(01), 141-149.
  48. Shushay, C., & Haile, Z. (2014)., Evaluation of Tomato varieties for fruit yield and yield components in western lowland of Tigray, Northern Ethiopia., International Journal of agricultural research, 9(5), 259-264.
  49. Ismaeel, M., Khan, M. S., Shah, S. S., Ali, Z., Ali, A., Tawab, S. and Naeem, M. (2019)., Assessment of different tomato genotypes for yield and morphological attributes., Pure and Applied Biology, 8(1), 295-303.
  50. Naz, R. M. M., Muhammad, S., Hamid, A. and Bibi, F. (2012)., Effect of boron on the flowering and fruiting of tomato., Sarhad Journal of Agriculture, 28(1), 37-40.
  51. Ullah, M. Z., Hassan, L., Shahid, S. B. and Patwary, A. K. (2015)., Variability and inter relationship studies in tomato (Solanum lycopersicum L.)., Journal of the Bangladesh Agricultural University, 13(1), 65-69.
  52. Sora, S. A. (2018)., Review on Productivity of Released Tomato (Solanum lycopersicum L.) Varieties in Different Parts of Ethiopia., Journal of Horticulture Science and Forestry, 1, 102.
  53. Baliyan, S. P. and Rao, M. S. (2013)., Evaluation of Tomato Varieties for Pest and Disease Adaptation and Productivity in Botswana., International Journal of Agricultural and Food Research, 2(3), 20-29.
  54. Tao, Y., Liu, T., Wu, J., Wu, Z., Liao, D., Shah, F. and Wu, W. (2022)., Effect of Combined Application of Chicken Manure and Inorganic Nitrogen Fertilizer on Yield and Quality of Cherry Tomato., Agronomy, 12(7), 1574.
  55. Mfombep, P. M., Fonge, B. A., Atembe-afac, A. and Tabot, P. T. (2016)., Soil Type and Ammendment Influence Growth and Yield of Tomatoes Lycopersicon esculentum L. in the Humid Mt Cameroon Region., International Journal of Current Research in Biosciences and Plant Biology, 3(8), 58-64.
  56. Wali, A. S. and Kabura, B. H. (2014)., Correlation Studies in Tomato (Solanum lycopersicum L.) as Affected by Mulching and Cultivar during the Heat Period in the Semi-Arid Region of Nigeria., International Letters of Natural Sciences, 15, 1-7.
  57. Mahapatra, A. S., Singh, A. K., Vani, V. M., Mishra, R. Kumar, H. and Rajkumar, B. V. (2013)., Inter-relationship for Various Components and Path Coefficient Analysis in Tomato (Lycopersicon esculentum Mill). International Journal of Current Microbiology and Applied Sciences, 2(9), 147-152., undefined
  58. Monamodi, E. L., Lungu, D. M., & Fite, G. L. (2013)., Analysis of fruit yield and its components in determinate tomato (Lycopersicon lycopersci) using correlation and path coefficient.,
  59. Singh, A. K., Solankey, S. S., Akhtar, S., Kumari, P., & Chaurasiya, J. (2018)., Correlation and path coefficient analysis in Tomato (Solanum lycopersicum L.)., Int. J. Curr. Microbiol. App. Sci, 7, 4278-85.