International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Biosurfactants- A boon for therapeutics

Author Affiliations

  • 1Disha Life Sciences Pvt. Ltd., Ahmedabad, Gujarat, India
  • 2Swarnim Startup and Innovation University, Gandhinagar, Gujarat, India
  • 3Disha Life Sciences Pvt. Ltd., Ahmedabad, Gujarat, India

Int. Res. J. Biological Sci., Volume 12, Issue (1), Pages 35-41, May,10 (2023)

Abstract

Since the last decade, research has been underway to discover natural substances with therapeutic properties that can be exploited to treat a variety of ailments and enhance human health. One class of amphiphilic compounds of microbial origin that can interact with lipid membranes and other components of microorganisms and alter their physicochemical properties are biosurfactants. Due to this feature, biosurfactants are being studied more closely as prospective novel medications with potential uses in the clinical and therapeutic domains. The current review addresses biosurfactants' antimicrobial, antiviral, antibiofilm, and anticancer characteristics as well as their potential use in drug delivery systems.

References

  1. Morita, T., Ishibashi, Y., Hirose, N., Wada, K., Takahashi, M., Fukuoka, T., ... & Kitamoto, D. (2011)., Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilagoscitaminea NBRC 32730., Biosci Biotechnol Biochem, 75(7), 1371-1376.
  2. Shekhar, S., Sundaramanickam, A., & Balasubramanian, T. (2015)., Biosurfactant producing microbes and their potential applications: A review., Crit Rev Environ Sci Technol, 45(14), 1522-1554.
  3. Chen, M. L., Penfold, J., Thomas, R. K., Smyth, T. J. P., Perfumo, A., Marchant, R., ... & Grillo, I. (2010)., Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate., Langmuir, 26(23), 17958-17968.
  4. Chen, M. L., Penfold, J., Thomas, R. K., Smyth, T. J. P., Perfumo, A., Marchant, R., ... & Grillo, I. (2010)., Solution self-assembly and adsorption at the air− water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures., Langmuir, 26(23), 18281-18292.
  5. Abbot, V., Paliwal, D., Sharma, A., & Sharma, P. (2022)., A review on the physicochemical and biological applications of biosurfactants in biotechnology and pharmaceuticals., Heliyon, e10149. https://doi.org/10.1016/j.heliyon.2022.e10149
  6. Corazza, E., Abruzzo, A., Giordani, B., Cerchiara, T., Bigucci, F., Vitali, B., ... & Luppi, B. (2022)., Human Lactobacillus biosurfactants as natural excipients for nasal drug delivery of hydrocortisone., Pharmaceutics, 14(3), 524. https://doi.org/10.3390/pharmaceutics14030524
  7. Gudiña, E. J., Rangarajan, V., Sen, R., & Rodrigues, L. R. (2013)., Potential therapeutic applications of biosurfactants., Trends Pharmacol Sci, 34(12), 667-675. https://doi.org/10.1016/j.tips.2013.10.002
  8. Fracchia, L., Banat, J. J., Cavallo, M., & Banat, I. M. (2015)., Potential therapeutic applications of microbial surface-activecompounds., AIMS Bioeng, 2(3), 144-162. http://www.aimspress.com/article/10.3934/bioeng.2015.3.144
  9. Sajid, M., Khan, M. S. A., Cameotra, S. S., & Al-Thubiani, A. S. (2020)., Biosurfactants: potential applications as immunomodulator drugs., Immunol Lett, 223, 71-77. https://doi.org/10.1016/j.imlet.2020.04.003
  10. Lim, J. S., Park, H. S., Cho, S., & Yoon, H. S. (2018)., Antibiotic susceptibility and treatment response in bacterial skin infection., Ann Dermatol, 30(2), 186. https://doi.org/10.5021/ad.2018.30.2.186
  11. Gudiña, E. J., Teixeira, J. A., & Rodrigues, L. R. (2016)., Biosurfactants produced by marine microorganisms with therapeutic applications., Mar drugs, 14(2), 38. https://doi.org/10.3390/md14020038
  12. Fariq, A., & Saeed, A. (2016)., Production and biomedical applications of probiotic biosurfactants., Curr Microbiol, 72, 489-495. https://doi.org/10.1007/s00284-015-0978-4
  13. Gudina, E. J., Teixeira, J. A., & Rodrigues, L. R. (2010)., Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei., Colloids Surf B Biointerfaces, 76(1), 298-304.
  14. Mandal, S. M., Sharma, S., Pinnaka, A. K., Kumari, A., &Korpole, S. (2013)., Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter., BMC Microbiol, 13, 1-9.
  15. Saravanakumari, P. & Mani, K. (2010). Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol, 101(22), 8851-8854., undefined, undefined
  16. Jung, M., Lee, S., & Kim, H. (2000)., Recent studies on natural products as anti-HIV agents., Curr Med Chem, 7(6), 649-661.
  17. Seydlová, G., & Svobodová, J. (2008)., Review of surfactin chemical properties and the potential biomedical applications., Cent Eur J Med, 3, 123-133. https://doi.org/10.2478/s11536-008-0002-5
  18. Yuan, L., Zhang, S., Wang, Y., Li, Y., Wang, X., & Yang, Q. (2018)., Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses., J Virol, 92(21), e00809-18.
  19. Biniarz, P., Łukaszewicz, M., & Janek, T. (2017)., Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review., Crit Rev Biotechnol, 37(3), 393-410. https://doi.org/10.3109/07388551.2016.1163324
  20. Naruse, N., Tenmyo, O., Kobaru, S., Kamei, H., Miyaki, T., Konishi, M., & Oki, T. (1990)., Pumilacidin, a complex of new antiviral antibiotics production, isolation, chemical properties, structure and biological activity., J Antibiot, 43(3), 267-280.
  21. Vollenbroich, D., Özel, M., Vater, J., Kamp, R. M., & Pauli, G. (1997)., Mechanism of inactivation of enveloped viruses by the biosurfactant surfactinfrom Bacillus subtilis., Biologicals, 25(3), 289-297.
  22. Huang, X., Lu, Z., Zhao, H., Bie, X., Lü, F., & Yang, S. (2006)., Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro., Int J Pept Res Ther, 12, 373-377. https://doi.org/10.1007/s10989-006-9041-4
  23. Subramaniam, M. D., Venkatesan, D., Iyer, M., Subbarayan, S., Govindasami, V., Roy, A., ... &Vellingiri, B. (2020)., Biosurfactants and anti-inflammatory activity: A potential new approach towards COVID-19., Curr Opin Environ Sci Health, 17, 72-81. https://doi.org/10.1016/j.coesh.2020.09.002
  24. Smith, M. L., Gandolfi, S., Coshall, P. M., & Rahman, P. K. (2020)., Biosurfactants: a Covid-19 perspective., Front Microbiol, 11, 1341.
  25. Ceresa, C., Fracchia, L., Fedeli, E., Porta, C., & Banat, I. M. (2021)., Recent advances in biomedical, therapeutic and pharmaceutical applications of microbial surfactants., Pharmaceutics, 13(4), 466. https://doi.org/10. 3390/pharmaceutics13040466
  26. Berlanga, M., & Guerrero, R. (2016)., Living together in biofilms: the microbial cell factory and its biotechnological implications., Microb Cell Factories, 15(1), 1-11. https://doi.org/10.1186/s12934-016-0569-5
  27. Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020)., Bacterial biofilm and its role in the pathogenesis of disease., Antibiotics, 9(2), 59. https://doi.org/10.3390/ antibiotics9020059
  28. López, D., Vlamakis, H., & Kolter, R. (2010)., Biofilms., Cold Spring Harb Perspect Biol, 2(7), a000398. https://doi.org/10.1101/cshperspect.a000398
  29. Sharma, D., Misba, L., & Khan, A. U. (2019)., Antibiotics versus biofilm: an emerging battleground in microbial communities., Antimicrob Resist Infect Control, 8(1), 1-10. https://doi.org/10.1186/s13756-019-0533-3
  30. Haque, M., Sartelli, M., Mc Kimm, J., & Bakar, M. A. (2018)., Health care-associated infections–an overview., Infect Drug Resist, 11, 2321. https://doi.org/10.2147/IDR.S177247
  31. Percival, S. L., Suleman, L., Vuotto, C., & Donelli, G. (2015)., Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control., J Med Microbiol, 64(4), 323-334. https://doi.org/10.1099/ jmm.0.000032
  32. Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., & Alarcon, E. I. (2018)., Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention., Heliyon, 4(12), e01067. https://doi.org/10. 1016/j.heliyon.2018.e01067
  33. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017)., Targeting microbial biofilms: current and prospective therapeutic strategies., Nat Rev Microbiol, 15(12), 740-755. https://doi.org/10.1038/ nrmicro.2017.99
  34. Fleming, D., & Rumbaugh, K. P. (2017)., Approaches to dispersing medical biofilms., Microorganisms, 5(2), 15. https://doi.org/10.3390/microorganisms5020015
  35. Naughton, P. J., Marchant, R., Naughton, V., & Banat, I. M. (2019)., Microbial biosurfactants: current trends and applications in agricultural and biomedical industries., J Appl Microbiol, 127(1), 12-28. https://doi.org/10.1111/ jam.14243
  36. Fracchia, L., Ceresa, C., & Banat, I. M. (2019)., Biosurfactants in cosmetic, biomedical and pharmaceutical industry. Microbial Biosurfactants and Their Environmental and Industrial Applications., Banat, IM, Thavasi, R., Eds, 258-288. https://doi.org/10.1201/b21950
  37. Banat, I. M., Carboué, Q., Saucedo-Castaneda, G., & de Jesús Cázares-Marinero, J. (2021)., Biosurfactants: The green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology., Bioresour Technol, 320, 124222. https://doi.org/10.1016/j.biortech.2020.124222
  38. Satpute, S. K., Kulkarni, G. R., Banpurkar, A. G., Banat, I. M., Mone, N. S., Patil, R. H., & Cameotra, S. S. (2016)., Biosurfactants from Lactobacilli species: Properties, challenges and potential biomedical applications., J Basic Microbiol, 56(11), 1140-1158. https://doi.org/10.1002/ jobm.201600143
  39. Banat, I. M., De Rienzo, M. A. D., & Quinn, G. A. (2014)., Microbial biofilms: biosurfactants as antibiofilm agents., Appl Microbiol Biotechnol, 98, 9915-9929. https://doi.org/10.1007/s00253-014-6169-6
  40. Paraszkiewicz, K., Moryl, M., Płaza, G., Bhagat, D., K. Satpute, S., & Bernat, P. (2021)., Surfactants of microbial origin as antibiofilm agents., Int J Environ Health Res, 31(4), 401-420.
  41. Ceresa, C., Rinaldi, M., Tessarolo, F., Maniglio, D., Fedeli, E., Tambone, E., ... & Fracchia, L. (2021b)., Inhibitory effects of lipopeptides and glycolipids on C. albicans–Staphylococcus spp. Dual-Species Biofilms., Front Microbiol, 11, 545654. https://doi.org/10.3389/fmicb. 2020. 545654
  42. Rodrigues, L. R., Banat, I. M., Van der Mei, H. C., Teixeira, J. A., & Oliveira, R. (2006)., Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants., J Appl Microbiol, 100(3), 470-480. https://doi.org/10.1111/j.1365-2672.2005.02826.x
  43. Quinn, G. A., Maloy, A. P., Banat, M. M., & Banat, I. M. (2013)., A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms., Curr Microbiol, 67, 614-623. https://doi.org/10.1007/s00284-013-0412-8
  44. Siegel, R. L., Miller, K. D., & Jemal, A. (2015)., Cancer statistics. CA: a cancer journal for clinicians, 65(1), 5-29. https://doi.org/10.3322/caac.21254, undefined
  45. Cochrane, S. A., &Vederas, J. C. (2016)., Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates., Med Res Rev, 36(1), 4-31. https://doi.org/10.1002/med.21321
  46. Rodrigues, L., Banat, I. M., Teixeira, J., & Oliveira, R. (2006b)., Biosurfactants: potential applications in medicine., J Antimicrob Chemother, 57(4), 609-618. https://doi.org/10.1093/jac/dkl024
  47. Cao, X. H., Wang, A. H., Wang, C. L., Mao, D. Z., Lu, M. F., Cui, Y. Q., & Jiao, R. Z. (2010)., Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway., Chemico-biological interactions, 183(3), 357-362. https://doi.org/10.1016/j.cbi.2009.11.027
  48. Zhao, X., Geltinger, C., Kishikawa, S., Ohshima, K., Murata, T., Nomura, N., ... & Yokoyama, K. K. (2000)., Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis., Cytotechnology, 33, 123-130. https://doi.org/10.1023/A:1008129616127
  49. Chiewpattanakul, P., Phonnok, S., Durand, A., Marie, E., & Thanomsub, B. W. (2010)., Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80., J Microbiol Biotechnol, 20(12), 1664-1671. https://doi.org/10.4014/ jmb.1007.07052
  50. Duarte, C., Gudiña, E. J., Lima, C. F., & Rodrigues, L. R. (2014)., Effects of biosurfactants on the viability and proliferation of human breast cancer cells., AMB express, 4, 1-12. https://doi.org/10.1186/s13568-014-0040-0
  51. Davey, M. E., Caiazza, N. C., & O, Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1., J Bacteriol, 185(3), 1027-1036. https://doi.org/10.1128/JB. 185.3.1027-1036.2003
  52. Diaz De Rienzo, M. A., Stevenson, P. S., Marchant, R., & Banat, I. M. (2016)., Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel., Appl Microbiol Biotechnol, 100, 5773-5779. https://doi.org/10.1007/ s00253-016-7310-5
  53. Singh, A. K., & Sharma, P. (2020)., Disinfectant-like activity of lipopeptide biosurfactant produced by Bacillus tequilensis strain SDS21., Colloids Surf B Biointerfaces, 185, 110514. https://doi.org/10.1016/ j.colsurfb.2019.110514
  54. Cao, L. Q., Wang, X. L., Wang, Q., Xue, P., Jiao, X. Y., Peng, H. P., ... & Chen, J. S. (2009)., Rosiglitazone sensitizes hepatocellular carcinoma cell lines to 5-fluorouracil antitumor activity through activation of the PPARγsignaling pathway., Acta Pharmacol Sin, 30(9), 1316-1322. https://doi.org/10.1038/aps.2009.119
  55. Chen, J., Song, X., Zhang, H., & Qu, Y. (2006)., Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercq uae., Enzyme Microb Technol, 39(3), 501-506. https://doi.org/10.1016/ j.enzmictec.2005.12.022
  56. Isoda, H., Kitamoto, D., Shinmoto, H., Matsumura, M., & Nakahara, T. (1997)., Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60., Biosci Biotechnol Biochem, 61(4), 609-614. https://doi.org/10.1271/bbb.61.609
  57. Mohd Isa, M. H., Shamsudin, N. H., Al-Shorgani, N. K. N., Alsharjabi, F. A., & Kalil, M. S. (2020)., Evaluation of antibacterial potential of biosurfactant produced by surfactin-producing Bacillus isolated from selected Malaysian fermented foods., Food Biotechnol, 34(1), 1-24. https://doi.org/10.1080/08905436.2019.1710843.
  58. Gaur, V. K., Regar, R. K., Dhiman, N., Gautam, K., Srivastava, J. K., Patnaik, S., ... & Manickam, N. (2019)., Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: application as food emulsifier and antibacterial agent., Bioresour Technol, 285, 121314. https://doi.org/10.1016/j.biortech.2019.121314
  59. Remichkova, M., Galabova, D., Roeva, I., Karpenko, E., Shulga, A., & Galabov, A. S. (2008)., Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate., Z Naturforsch C, 63(1-2), 75-81. https://doi.org/10.1515/znc-2008-1-214
  60. Shah, V., Doncel, G. F., Seyoum, T., Eaton, K. M., Zalenskaya, I., Hagver, R., ... & Gross, R. (2005)., Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities., Antimicrob Agents Chemother, 49(10), 4093-4100. https://doi.org/10.1128/AAC.49.10.4093-4100.2005
  61. Borsanyiova, M., Patil, A., Mukherji, R., Prabhune, A., & Bopegamage, S. (2016)., Biological activity of sophorolipids and their possible use as antiviral agents., Folia Microbiol, 61, 85-89. https://doi.org/10.1007/s12223-015-0413-z
  62. Elshikh, M., Marchant, R., & Banat, I. M. (2016)., Biosurfactants: promising bioactive molecules for oral-related health applications., FEMS Microbiol Lett, 363(18), fnw 213. https://doi.org/10.1093/femsle/fnw213