International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Prebiotic potential and characterization of microbes found in the guts of Wistar rats fed with feeds supplemented with some Macro-fungi from Oyo state, Southwestern Nigeria

Author Affiliations

  • 1Mycology & Applied Microbiology Unit, Department of Botany, University of Ibadan, Nigeria
  • 2Gastrointestinal Secretion and Inflammatory Research Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria
  • 3Genetics Unit, Department of Botany, University of Ibadan, Nigeria
  • 4Department of Microbiology, University of Ilorin, Ilorin Kwara State, Nigeria

Int. Res. J. Biological Sci., Volume 11, Issue (4), Pages 1-6, November,10 (2022)

Abstract

The new phenomenon in food technology is the use of prebiotics for therapeutic purposes to control the normal body flora of gastrointestinal tracts. The prebiotic potential and characterization of microbes found in the guts of Wistar rats fed with feeds supplemented with some selected macro-fungi diet was evaluated on male Wistar rats (Rattus norvegicus). Our result showed that the macro-fungi supplemented diets exhibited prebiotic activities while thebacteria isolated and characterized from the stomach of Wistar rat include Lactobacillus casei, Pediococusacidilactici, Lactobacillus fermentum, Enterococcus faecalis, Streptococcus pneumonia, Lactobacillus acidophilus, Leuconostoc lactis, Campylobacter jejuni, Vibroalbensis, Salmonella enterica, Shigella dysenteraie, and Escherichia coli. From the results, it is suggestive that the higher fungi enriched feedsis prebiotic as they enhanced the pro-biotic micro-flora over the pathogenic microbes.

References

  1. Roy, A., Prasad, P., & Gupta, N. (2014)., Volvariella volvacea: A macrofungus having nutritional and health potential., Asian Journal of Pharmacy and Technology, 4(2), 110-113.
  2. Kumar, H., Salminen, S., Verhagen, H., Rowland, I., Heimbach, J., Bañares, S., & Lalonde, M. (2015)., Novel probiotics and prebiotics: road to the market., Current opinion in biotechnology, 32, 99-103.
  3. Cheng, D., Song, J., Xie, M., & Song, D. (2019)., The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review., Trends in Food Science & Technology, 91, 426-435.
  4. Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., and Guarner, F. (2010)., Prebiotic effects: metabolic and health benefits., British Journal of Nutrition, 104.S2: S1-S63.
  5. Gibson, G. R., Scott, K. P., Rastall, R. A., and Tuohy, K. M. (2010)., Dietary 531 prebiotics: current status and new definition., Food Science and Technological 532 Bulletin: Functional Foods, 7, 1-19.
  6. Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., ... & Reid, G. (2017)., Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics., Nature reviews Gastroenterology & hepatology, 14(8), 491-502.
  7. Banerjee, A., & Dhar, P. (2019)., Amalgamation of polyphenols and probiotics induce health promotion., Critical reviews in food science and nutrition, 59(18), 2903-2926.
  8. Blaut, M., Collins, M. D., Welling, G. W., Dore, J., Van Blaut, M., Collins, M. D., Welling, G. W., Dore, J., Van Loo, J., & De Vos, W. (2002)., Molecular biological methods for studying the gut microbiota: the EU human gut flora project., British Journal of Nutrition, 87(S2), S203-S211.
  9. Ushakova, N. A., Nekrasov, R. V., Pravdin, I. V., Sverchkova, N. V., Kolomiyets, E. I., & Pavlov, D. S. (2015)., Mechanisms of the effects of probiotics on symbiotic digestion., Biology Bulletin, 42(5), 394-400.
  10. Buruiana, C. T., Gómez, B., Vizireanu, C., & Garrote, G. (2017)., Manufacture and evaluation of xylooligosaccharides from corn stover as emerging prebiotic candidates for human health., LWT, 77, 449-459.
  11. Slomka, V., Hernandez Sanabria, E., Herrero, E. R., Zaidel, L., Bernaerts, K., Boon, N., ... & Teughels, W. (2017)., Nutritional stimulation of commensal oral bacteria suppresses pathogens: the prebiotic concept., Journal of clinical periodontology, 44(4), 344-352.
  12. Murray, M. G., & Thompson, W. (1980)., Rapid isolation of high molecular weight plant DNA., Nucleic acids research, 8(19), 4321-4326.
  13. National Research Council (1995)., Nutrient requirements of laboratory animals., The National Academies.
  14. Albus, U. (2012)., Guide for the Care and Use of Laboratory Animals (8th edn).,
  15. Huebner, J., Wehling, R. L. & Hutkins, R. W. (2007)., Functional activity of commercial prebiotics., International Dairy Journal, 17(7), 770-775.
  16. Zimmermann, P., & Curtis, N. (2018)., Factors influencing the intestinal microbiome during the first year of life., The Pediatric infectious disease journal, 37(12), e315-e335
  17. Holms, W. H. (1968)., Viable counts of bacteria—a new method for facultative anaerobes., Microbiology, 54(2), 255-260.