International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Effect of marine algae based polysaccharides from porphyridium sp. as bio-stimulant on wheat plant

Author Affiliations

  • 1Polymer Synthesis & Catalysis Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai-400701, India
  • 2Germplasm & Cultivation Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai-400701, India
  • 3Germplasm & Cultivation Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai-400701, India
  • 4Germplasm & Cultivation Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai-400701, India
  • 5Polymer Synthesis & Catalysis Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai-400701, India

Int. Res. J. Biological Sci., Volume 11, Issue (1), Pages 12-17, February,10 (2022)

Abstract

In the present study exopolysaccharide (EPS) from marine red algae has been studied as bio-stimulant for agricultural use. Algal exopolysaccharide with Magnesium chloride was applied as nutrient for wheat plant. Exopolysaccharide addition of 0.5-1 wt% showed enhancement in the amino acid content, Chlorophyll content and relative water content in wheat plant. Based on the present study it can be concluded that combination of EPS and MgCl2 can be recommend as bio-stimulant to enhancing the photosynthetic activity in commercial crops. Exopolysaccharide from Porphyridium has a great potential and can be used as bio-stimulator for agriculture application.

References

  1. Martin Parry (1990)., Climate Change and World Agriculture., Earthscan Publications Ltd., London, pp 1-178. ISBN 1-85383-065-8.
  2. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. and Polasky, S. (2002)., Agricultural Sustainability and Intensive Production Practices., Nature, 418(6898), 671-677.
  3. Calvo, P., Nelson, L., & Kloepper, J. W. (2014)., Agricultural uses of plant biostimulants., Plant and soil, 383(1), 3-41.
  4. Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017)., Biostimulants in plant science: a global perspective., Frontiers in plant science, 7, 2049.
  5. Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015)., Seaweed extracts as biostimulants in horticulture., Scientia Horticulturae, 196, 39-48.
  6. Craigie, J. S. (2011)., Seaweed extract stimuli in plant science and agriculture., Journal of applied phycology, 23(3), 371-393.
  7. Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., ... & Prithiviraj, B. (2009)., Seaweed extracts as biostimulants of plant growth and development., Journal of Plant Growth Regulation, 28(4), 386-399.
  8. Marsham, S., Scott, G. W., & Tobin, M. L. (2007)., Comparison of nutritive chemistry of a range of temperate seaweeds., Food chemistry, 100(4), 1331-1336.
  9. Faheed, Fayza A., and Z. Abdel Fattah (2008)., Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant, . Journal of Agriculture and Social Sciences (Pakistan).
  10. Abd El‐Baky, H. H., El‐Baz, F. K., & El Baroty, G. S. (2010)., Enhancing antioxidant availability in wheat grains from plants grown under seawater stress in response to microalgae extract treatments., Journal of the Science of Food and Agriculture, 90(2), 299-303.
  11. Oancea, F., Velea, S., Fãtu, V., Mincea, C., & Ilie, L. (2013)., Micro-algae based plant biostimulant and its effect on water stressed tomato plants., Rom. J. Plant Prot, 6, 104-117.
  12. El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N. and Smouni, A. (2018)., Dunaliella Salina Exopolysaccharides: A Promising Biostimulant for Salt Stress Tolerance in Tomato (Solanumlycopersicum)., J. Appl. Phycol., 30(5), 2929-2941.
  13. Xiao, R. and Zheng, Y. (2016)., Overview of Microalgal Extracellular Polymeric Substances (EPS) and Their Applications., J.Biotechnol. Adv., 34(7), 1225–1244.
  14. Drever, J.I. and Stillings, L.L. (1997)., The Role of Organic Acids in Mineral Weathering., Colloids Surf. Physicochem. Eng. Asp., 120(1-3), 167–181.
  15. Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C. and Rouphael, Y., (2018)., Renewable Sources of Plant Biostimulation: Microalgae as A Sustainable Means to Improve Crop Performance., Front. Plant Sci., 9, 1782.
  16. Abdel-Hafez, S.I., Abo-Elyousr, K.A. and Abdel-Rahim, I.R. (2015)., Fungicidal Activity of Extracellular Products of Cyanobacteria Against, Alternariaporri., Eur. J. Phycol., 50(2) 239–245.
  17. Kim, J.D. (2006)., Screening of Cyanobacteria (Blue-Green algae) from Rice Paddy Soil for Antifungal Activity against Plant Pathogenic Fungi., Mycobiology, 34(3) 138–142.
  18. Tao, Y. and Barnett, S.M. (2004)., Effect of Light Quality on Production of Extracellular Polysaccharides and Growth Rate of Porphyridiumcruentum., Biochem. Eng. J., 19(3), 251-258.
  19. Golueke, C.G., and Oswald, W.J. (1962)., The mass culture of Porphyridiumcruentum., Appl. Microbiol., 10(2), 102-107.
  20. Mutale-Joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., & Zeroual, Y. (2020)., Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific reports., 10(1), 1-12.
  21. Arnon, D.I. (1949)., Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris., Plant Physiol., 24(1), 1-15.
  22. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951)., Protein Measurement with the Folin Phenol Reagent., J. Biol. Chem., 193(1), 265-75.
  23. Folin, O. and Wu, H. (1920)., A simplified and Improved Method for Determination of Sugar., J. Biol. Chem., 41(3), 367-74.
  24. Sivakumaran, S. and Hall, M.A. (1978)., Effect of Age and Water Stress Inendogenous Levels of Plants Growth Regulators in Euphorbia Lathyrus., J. Exp. Bot., 29(108), 195-205.
  25. Misra, P.S., Mertz, E.T. and Glover, D.V. (1975)., Studies on Corn Proteins. VIII. Free Amino Acid Content of Opaque-2 Double Mutants., Cereal. Chem., 52, 844-848.
  26. Gaikwad, M. S., Meshram, B. G., & Chaugule, B. B. (2009)., On occurrence of the genus Porphyridium Nageli: New to India., Journal of Algal Biomass Utilization, 1, 102-106.
  27. Guzman-Murillo, M.A. Ascencio, F. and Larrinaga-Mayoral, J.A. (2012)., Germination and ROS Detoxification in Bell Pepper (Capsicum annuum L.) under NaCl Stress and Treatment with Microalgae Extracts., Protoplasma, 250(1) 33–42.
  28. Arroussi, H.E., Benhima, R., Elbaouchi, A.,Sijilmassi, B., Mernissi, N.E., Aafsar, A., Meftah-Kadmiri, I., Bendou, N. and Smouni, A., (2018),, Dunaliella Salina Exopolysaccharides: A Promising Bio-stimulant for Salt Stress Tolerance in Tomato (Solanumlycopersicum)., J. Appl. Phycol., 30(5), 2929–2941.
  29. Rachidi, F., Benhima, R., Sbabou, L. and Arroussi, H.E. (2020)., Microalgae Polysaccharides Bio-stimulating Effect on Tomato Plants:Growth and Metabolic Distribution., Biotechnol. Rep., 25, e00426.
  30. Rachidi, F., Benhima, R., Kasmi, Y., Sbabou, L., & El Arroussi, H. (2021)., Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches., Scientific reports, 11(1), 1-16.
  31. Chanda, M. J., Merghoub, N., & Arroussi, H. E. (2019)., Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants?., World Journal of Microbiology and Biotechnology, 35(11), 1-10.
  32. El-Naggar, N.E.A., Hussein, M.H., Shaaban-Dessuuki, S.A. and Dalal, S.R. (2020)., Production, Extraction and Characterization of Chlorella vulgaris Soluble Polysaccharides and Their Applications in AgNPs Biosynthesis and Biostimulation of Plant Growth., Sci. Rep., 10(1), 1-19.
  33. Clarke, J.M. and McCaig, T.N. (1982)., Evaluation of Techniques for Screening for Drought Resistance in Wheat., J. Crop Sci., 22(3), 503-506.
  34. Schonfeld, M.A., Johnson, R.C., Carver B.F. and Mornhinweg, D.W. (1988)., Water Relations in Winter Wheat as Drought Resistance Indicators., J. Crop Sci., 28(3), 526-531.
  35. Tahara, M., Carver, B.F., Johnson, R.C. and Smith, E.L. (1990)., Relationship between Relative Water Content During Reproductive Development and Winter Wheat Grain Yield., Euphytica, 49, 255-262.
  36. Sinclair, T.R. and Ludlow, M.M. (1985)., Who Taught Plants Thermodynamics? The Unfulfilled Potential of Plant Water Potential., Aust. J. Plant Physiol., 12(3), 213-217.
  37. Hassanzadeh, M., Ebadi, A., Panahyan, E.K., Eshghi, A.G., Somarin, J.E., Saeidi, M. and Zabihi-e-Mahmoodabad, R. (2009)., Evaluation of Drought Stress on Relative Water Content and Chlorophyll Content of Sesame (sesamumindicum L.) Genotypes at Early Flowering Stage., Res. J. Environ.Sci., 3(3), 345-350.
  38. Walter Larcher (1995)., Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups., Springer, New York, pp 1-528. ISBN 978-3-540-43516-7.
  39. Rai, V.K. (2002)., ROLE of Amino Acids in Plant Responses to Stresses., Biologiaplantarum, 45(4), 481-487.