International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Novel Coronavirus: an emergent virus, threat for mankind

Author Affiliations

  • 1South Calcutta Girls College, 72, Sarat Bose Rd, Lansdown, Garcha, Ballygunge, Kolkata, West Bengal 700025, India

Int. Res. J. Biological Sci., Volume 10, Issue (1), Pages 40-44, February,10 (2021)

Abstract

The coronavirus pandemic (2019-nCoV) that germinated in Wuhan city of China, has gradually surpassed every geographical boundary possible to bring 213 countries under its grasp. The amount of cases has been accelerating each day in an exponential manner with the manner of transmission being interface amid human-to-human or through air droplets; and the patients infected with pneumonia by SARS-CoV-2, are exhibiting common flu like symptoms of fever and coughing. There is tremendous pressure on the governments of all countries to control the outbreak that has transformed into a global health emergency. Therefore the current scenario demands transparency, preparedness and sharing of information as essential steps to combat this outbreak. This manuscript assembles the virology and updated clinical management strategies. The human CoV outbreaks future depends on the evolution of viruses as well as development of prevention and promising treatment strategies for dealing with future threat of spreads.

References

  1. Gao, G.F. (2018)., From AIV to ZIKV: Attacks from emerging and re-emerging pathogens., Cell, 172, 1157-1159.
  2. Lu H, Stratton CW and Tang YW. (2020)., Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle., J Med Virol., doi:10.1002/jmv. 25678 .
  3. Weiss, S.R. and Leibowitz, J.L. (2011)., Coronavirus pathogenesis., Adv. Virus Res., 81, 85-164.
  4. Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.; Zhou, J. and Gao, G.F. (2016)., Epidemiology, genetic recombination, and pathogenesis of coronaviruses., Trends Microbiol., 24, 490-502.
  5. Cui, J.; Li, F. and Shi, Z.L. (2019)., Origin and evolution of pathogenic coronaviruses., Nat. Rev. Microbiol., 17, 181-192.
  6. Lu H, Stratton CW and Tang YW. (2020)., Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle., J Med Virol.. doi: 10.1002/jmv. 25678 .
  7. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. (2020)., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia., N Engl J Med.,. doi: 10.1056/NEJMoa2001316.
  8. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. (2020)., Severe acute respiratory syndrome-related coronavirus: the species and its viruses—a statement of the Coronavirus Study Group., Bio Rxiv. doi: 10.1101/2020.02.07.937862 .
  9. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. (2020)., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study., Lancet; 395507-13. doi: 10.1016/S0140- 6736(20)30211- 7 .
  10. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020)., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China., The lancet, 395(10223), 497-506.
  11. Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020)., A novel coronavirus outbreak of global health concern., The lancet, 395(10223), 470-473. doi: 10.1016/ S0140-6736(20)30185-9 .
  12. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. (2020)., First case of 2019 novel coronavirus in the United States., N Engl J Med., doi: 10.1056/NEJMoa2001191 .
  13. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. (2020)., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China., JAMA., doi: 10.1001/jama.2020. 1585.
  14. Chang D, Lin M, Wei L, Xie L, Zhu G, Dela Cruz CS, et al. (2020)., Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China., JAMA., doi: 10.1001/ jama.2020.1623 .
  15. Carlos WG, Dela Cruz CS, Cao B, Pasnick S and Jamil S. (2020)., Novel Wuhan (2019-nCoV) coronavirus., Am J Respir Crit Care Med; 201: P7-8. doi: 10.1164/rccm. 2014P7 .
  16. Hui DS, Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. (2020)., The continuing 2019-nCoV epidemic threat of novel coronavirusesto global health-the latest 2019 novel coronavirus outbreak in Wuhan, China., Int J Infect Dis;, 91, 264-6.
  17. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z. L. (2020)., A pneumonia outbreak associated with a new coronavirus of probable bat origin., Nature, 579(7798), 270-273.
  18. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Zhang, Y. Z. (2020)., A new coronavirus associated with human respiratory disease in China., Nature, 579(7798), 265-269.
  19. Chen L, Liu W, Zhang Q, Xu K, Ye G, Wu W, et al. (2020)., RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak., Emerg Microbes Infect., 9, 313-319.
  20. Drosten, C.; Gunther, S.; Preiser, W.; Van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.; et al. (2003)., Identification of a novel coronavirus in patients with severe acuterespiratory syndrome., N. Engl. J. Med., 348, 1967-1976.
  21. Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. (2003)., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus., Nature., 426, 450-454.
  22. Chan-Yeung, M. and Xu, R.H. (2003)., SARS: Epidemiology., Respirology., 8, S9-S14.
  23. Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Crameri, G.; Hu, Z. and Zhang, H. (2005)., Bats are natural reservoirs of SARS-like coronaviruses., Science., 310, 676-679.
  24. Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Guan, Y.J.; et al. (2003)., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China., Science., 302, 276-278.
  25. Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Tsoi, H.W.; Wong, B.H.; Wong, S.S.; Leung, S.Y.; Chan, K.H.; Yuen, K.Y. (2005)., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats., Proc. Natl. Acad. Sci. USA., 102, 14040-14045.
  26. Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., ... & Farzan, M. (2005)., Receptor and viral determinants of SARS‐coronavirus adaptation to human ACE2., The EMBO Journal, 24(8), 1634-1643.
  27. Lau, S. K., Li, K. S., Tsang, A. K., Lam, C. S., Ahmed, S., Chen, H., ... & Yuen, K. Y. (2013)., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus., Journal of Virology, 87(15), 8638-8650.
  28. Memish, Z. A., Mishra, N., Olival, K. J., Fagbo, S. F., Kapoor, V., Epstein, J. H., ... & Lipkin, W. I. (2013)., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia., Emerging infectious diseases, 19(11), 1819.
  29. Alagaili, A. N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S. C., de Wit, E., ... & Lipkin, W. I. (2014)., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia., MBio, 5(2).
  30. Haagmans, B.L.; Al Dhahiry, S.H.; Reusken, C.B.; Raj, V.S.; Galiano, M.; Myers, R.; Godeke, G.J.; Jonges, M.; Farag, E.; Diab, A.; et al. (2014)., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation., Lancet Infect. Dis., 14, 140-145.
  31. Muller, M.A.; Corman, V.M.; Jores, J.; Meyer, B.; Younan, M.; Liljander, A.; Bosch, B.J.; Lattwein, E.; Hilali, M.; Musa, B.E.; et al. (2014)., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997., Emerg. Infect. Dis., 20, 2093-2095.
  32. Lau, S.K.P.; Zhang, L.; Luk, H.K.H.; Xiong, L.; Peng, X.; Li, K.S.M.; He, X.; Zhao, P.S.; Fan, R.Y.Y.; Wong, A.C.P.; et al. (2018)., Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding., J. Infect. Dis., 218, 197-207.
  33. Zhang, Z.; Shen, L. and Gu, X. (2016)., Evolutionary Dynamics of MERS-CoV: Potential Recombination, Positive Selection and Transmission., Sci. Rep., 6, 25049.
  34. Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. (2020)., Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany., N. Engl. J. Med.
  35. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. (2020)., Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding., Lancet., 395, 565-574.
  36. World Health Organization (WHO). (2020)., Novel coronavirus (2019-nCoV)., Situation report. https://www.who.int/docs/default-source/coronaviruse/ situation-reports/20200207-sitrep-18-ncov.pdf?sfvrsn=fa64 4293 _ 2.
  37. Patel A and Jernigan DB. (2020)., 2019-nCoV CDC Response Team. Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak—United States., December 31, 2019-February 4, 2020. MMWR Morb Mortal Wkly Rep., 69, 140-6. doi: 10.15585/mmwr.mm6905e1 .
  38. Takano, T., Katoh, Y., Doki, T., & Hohdatsu, T. (2013)., Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo., Antiviral research, 99(2), 100-107.
  39. Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M and Maes P. (2009)., Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice., Antimicrob Agents Chemother., 53, 3416-3421.
  40. Krzystyniak K and Dupuy JM. (1984)., Entry of mouse hepatitis virus 3 into cells., J Gen Virol., 65, 227-231.
  41. Payne HR, Storz J and Henk WG. (1990)., Initial events in bovine coronavirus infection: analysis through immunogold probes and lysosomotropic inhibitors., Arch Virol. 114, 175-189.
  42. Kono M, Tatsumi K, Imai AM, Saito K, Kuriyama T and Shirasawa H. (2008)., Inhibition of humancoronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK., Antiviral Res., 77, 150-152.
  43. Keyaerts, E., Vijgen, L., Maes, P., Neyts, J., & Van Ranst, M. (2004)., In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine., Biochemical and biophysical research communications, 323(1), 264-268.
  44. de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, van den Hoogen BG, Neyts J and Snijder EJ. (2014)., Screening of anFDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture., Antimicrob Agents Chemother., 58, 4875-4884.
  45. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. (2009)., The spike protein of SARS-CoV-a target for vaccine and therapeutic development., Nat Rev Microbiol., 7, 226-236
  46. Schoggins JW, Rice CM. (2011)., Interferon-stimulated genes and their antiviral effect or functions., Curropinvirol., 1, 519-525
  47. Garlinghouse, L. E., Smith, A. L., & Holford, T. (1984)., The biological relationship of mouse hepatitis virus (MHV) strains and interferon: in vitro induction and sensitivities., Archives of virology, 82(1-2), 19-29.
  48. Taguchi F and Siddell SG (1985)., Difference in sensitivity to interferon among mouse hepatitis viruses with high and low virulence for mice., Virology., 147, 41-48
  49. Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, van Amerongen G, Van Riel D, de Jong T, Itamura S, Chan KH, Tashiro M and Osterhaus AD. (2004)., Pegylatedinterferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques., Nat Med.10:290-293.
  50. Paragas J, Blatt LM, Hartmann C, Huggins JW and Endy TP. (2005)., Interferon alfacon1 is an inhibitor of SARS-corona virus in cell-based models., Antiviral Res., 66, 99-102.
  51. Zheng B, He ML, Wong KL, Lum CT, Poon LL, Peng Y, Guan Y, Lin MC and Kung HF. (2004)., Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type Iinterferons (IFN-alpha/beta) but not by type II interferon (IFN-gamma)., J Interferon Cytokine Res., 24, 388-390.
  52. de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S, Limpens RW, Posthuma CC, van der Meer Y, Barcena M, Haagmans BL, Snijder EJ, van den Hoogen BG. (2013b)., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment., J Gen Virol., 94, 1749-1760.
  53. Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, van Amerongen G, vanRiel D, de Jong T, Itamura S, Chan KH, Tashiro M, Osterhaus AD. (2004)., Pegylatedinterferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques., Nat Med., 10, 290-293.
  54. Dusheiko G. (1997)., Side effects of alpha interferon in chronic hepatitis C., Hepatology., 26, 112S-121S
  55. Kim, Y., Liu, H., Galasiti Kankanamalage, A. C., Weerasekara, S., Hua, D. H., Groutas, W. C., ... & Pedersen, N. C. (2016)., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor., PLoS pathogens, 12(3), e1005531.
  56. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. (2020)., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019- nCoV) in vitro., Cell Res., doi: 10.1038/ s41422- 020- 0282-0.
  57. www.https://www.worldometers.info/coronavirus/, undefined, undefined