International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Antioxidant, Antibacterial and Cytotoxic Potential of Selected Macroalgae from the Red Sea, Sudan Coast

Author Affiliations

  • 1Department of Botany, Faculty of Science, University of Khartoum, PC, 11115, P. O. Box 321 Khartoum, Sudan
  • 2Department of Botany, Faculty of Science, University of Khartoum, PC, 11115, P. O. Box 321 Khartoum, Sudan
  • 3Department of Medicinal Biochemistry, Medicinal, Aromatic and Traditional Research Institute (M.A.P.R.I.), National Center for Research, P. O. Box 2404 Khartoum, Sudan
  • 4Department of Botany, Faculty of Science, University of Khartoum, PC, 11115, P. O. Box 321 Khartoum, Sudan

Int. Res. J. Biological Sci., Volume 10, Issue (1), Pages 19-27, February,10 (2021)

Abstract

Marine biodiversity is a source of unique chemical hits with its potential to develop into drug leads. Many studies have reported that macroalgae from marine is considered as an essential origin of antibacterial, antioxidant and antitumor agents. In this study, three marine macroalgae, Jania rubens, Halimeda tuna and Turbinaria decurrens were collected from the Red Sea, Sudan coast near to Port Sudan city. The collected algae were successively extracted using four solvents with increasing polarities. Extracts of the marine macroalgae were evaluated for secondary phytochemicals as well as antioxidant and antibacterial activities using Iron chelating assay and cup plate agar diffusion methods respectively. Dichloromethane crude extracts of J. rubens and T. decurrens were tested for cytotoxic activity.The most bioactive extracts were subjected to column chromatography. Then the fractions evaluated for antioxidant and antibacterial activities. The results revealed that, the algal extracts contained major groups of secondary metabolites; flavonoids, triterpenes and alkaloids. The antioxidant results showed that the chloroform and ethanol extracts of J. rubens and H. tuna were more active than those of the ethyl acetate and the petroleum ether ones (highest activity 86%). The highest positive antibacterial activity were recorded for ethanol extracts against S. aureus and E. coli; while the chloroform extract exhibited positive results against E. coli in all investigated extracts. The fractions indicated that some fractions of the three algae have moderate to low activity against E. coli. J. rubens revealed unprecedented cytotoxic activity with IC50 less than 3µg/ml and selectivity against two of six tumor cell line. A major compound was isolated in pure form using preparative thin layer chromatography. The isolated pure compound was identified as &

References

  1. Anandhan, S. and Sorna kumara H. (2011)., Biostraining Potentials of Marine Macroalgae collected from Rameshwaram Tamilnadu., Journal of Biological Research, 5, 385-392.
  2. Kim, S. Y., Kim, E. A., Kang, M. C., Lee, J. H., Yang, H. W., Lee, J. S., Lim, T. I. and Jeon, Y. J. (2014)., Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model., Algae, 29(2), 165-74. DOI : http://dx.doi.org/10.4490/ algae.2014.29.2.165
  3. Fernando, I. S., Sanjeewa, K. A., Samarakoon, K. W., Lee, W. W., Kim, H. S., Kim, E. A., Gunasekara, U., Abeytunga, D., Nanayakkara, C. and Silva, E. (2017)., FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae., Algae, 32(1), 75-86. DOI: https://doi.org/10.4490/algae. 2017.32.12.1
  4. Wang, H-MD., Li, X-C., Lee, D-G. and Chang, J-S. (2017)., Potential biomedical applications of marine algae., Bioresource Technology Journal, 244, 1407-1415. DOI: 10.1016/j.biortech.2017.05.198. Epub 2017 Jun 3.
  5. Mayer, A. M., Rodriguez, A. D., Berlinck, R. G. and Hamann, M.T. (2009)., Marine pharmacology in 2005-6: marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action., Biochimica et Biophysica Acta, 1790(5), 283-308. DOI: 10.1016/ j.bbagen.2009.03.011. Epub 2009 Mar 19.
  6. Fernando, I. S., Kim, M., Son, K. T., Jeong, Y. and Jeon, Y. J. (2016)., Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach., Journal of Medicinal Food, 19(7), 615-28. DOI: 10.1089/ jmf.2016.3706. Epub 2016 Jun 22.
  7. Agatonovic-Kustrin, S. and Morton, D. W. J. (2017)., Quantification of polyphenolic antioxidants and free radical scavengers in marine algae., Journal of Applied Phycology, 29, 1-8. DOI:10.1007/s10811-017-1139-x
  8. Dashtiannasab, A., Kakoolaki, S., Sharif Rohani, M. and Yeganeh, V. (2012)., In vitro effects of Sargassum latifolium (Agardeh, 1948) against selected bacterial pathogens of shrimp., Iranian Journal of Fisheries Sciences, 11(1), 765-775.
  9. Awad, N. E. (2004)., Bioactive Brominated Diterpenes From the Marine Red Alga Jania rubens (L.) Lamx., Phytotherapy Research, 18(4), 275-279. DOI: 10.1002/ptr. 1273.
  10. Harborne, J. B. (1998)., Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis., 3rd ed. Springer Netherlands. pp. 1-302. ISBN: 978-0-412-57260-9
  11. Kexue, Z., Huimihgzhou and Haifeng Q. (2006)., Antioxidant and free radical - scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase., Process of Biochemistry Journal, 41, 1296-1302. DOI :10.1016/j.procbio.2005.12.029
  12. Kavanagh, F. (1972)., Analytical Microbiology., In: Kavanagh, F., Ed., Vol. 11, Academic Press, New York & London, pp.1- 650. ISBN: 9781483270555.
  13. Roth, T., Burger, A. M., Dengler, W. A., Willmann, H., Fiebig, H. H. (1999)., Human Tumor Cell Lines Demonstrating the Characteristics of Patient Tumors as Useful Models for Anticancer Drug Screening., In: Fiebig H. H. Burger, A. M. (Eds.) Relevance of Tumor Models for Anticancer Drug Development. Contributions to Oncology. Karger, Basel, 54, 145-156. DOI: 10.1159/000425830
  14. Mohamed, I. E., Gross, H., Pontius, A., Kehraus, S., Krick, A., Kelter, G., Maier, A., Fiebig, H.-H., Konig, G. M. (2009)., Epoxyphomalin A and B, Prenylated Polyketides with Potent Cytotoxicity from the Marine-Derived fungus Phoma sp., Organic Letters, 11, 5014-5017. DOI: 10.1021 /ol901996g
  15. Elangovan, M. and Anantharaman P. (2019)., Nutritional Composition and Phytochemistry Profile of Seaweeds Collected From Rameshwaram Coast., International Journal of Scientific & Technology Research, 8(11), 3137-3140.
  16. Ismail, G. A. Gheda, S. Abo-Shady, F. A. and Abdel-Karim, O. H. (2019)., In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes., Food Science and Technolology Campinas, Ahead of Print, (1-11). DOI: https://doi.org/10.1590/fst. 15619.
  17. Ong, A. S. H. and Tee, E. S. (1992)., Natural sources of carotenoids from plants and oils. Methods in Enzymology., 213, 142-167. DOI: https://doi.org/10.1016/0076-6879(92) 13118-H
  18. Smith, G.M. (1966)., Cryptogamic Botany Algae and Fungi., 1, McGraw-Hill / K?gakusha, New York, Pp, 546.
  19. Ruberto, G., Baratta, M. T., Biondi, D. M. and Amico, V. (2001)., Antioxidant activity of extracts of the marine algal genus Cystoseira in a micellar model system., Journal of Applied Phycology, 13, 403-407. DOI: https://doi.org/10. 1023/A:1011972230477
  20. Athukorala, Y., Nam, K. and Jeon., Y. (2006)., Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga Ecklonia cava., Journal of Food Chemistry and Toxicology, 44, 1065-1074. DOI: 10.1016/ j.fct.2006.01.011
  21. Horincar, V., Parfence, G. and Bahrim, G. (2011)., Evaluation of bioactive compounds in extracts obtained from three Romanian marine algae species., Romanian Biotechnological Letters, 6, 71-78.
  22. Shalaby, E.A.A. (2008)., Biochemical and Biotechnological studies on some marine algae. (Unpublished doctoral dissertation), Cairo University, Cairo-Eygpt., undefined
  23. Ismail-Ben Ali, A., El Bour, M., Ktari, L., Bolhuis, H., Ahmed, M., Boudabbous, A. and Stal, L. J. (2012)., Jania rubens associated bacteria: molecular identification and antimicrobial activity., Journal of Applied Phycology, 24, 525-534. DOI: 10.1007/s10811-011-9758-0
  24. Alghazeer, R., Howell, N., El-Naili, M. and Awayn, N. (2018)., Anticancer and Antioxidant Activities of Some Algae from Western Libyan Coast., Natural Science, 10, 232-246. DOI: 10.4236/ns.2018.107025.
  25. Devi, G. K., Manivannan, K., Thirumaran, G., Rajathi, F. A. A. and Anantharaman P. (2011)., In vitro antioxidant activities of selected seaweeds from Southeast coast of India., Asian Pacific Journal of Tropical Medicine, 4(3), 205-211. DOI: 10.1016/s1995-7645(11) 60070-9
  26. Rao, P. S. and Parekh, K. S. (1981)., Antibacterial activity of Indian Seaweed extracts., Journal of Marine Botany, 24, 577-582. DOI: https://doi.org/10.1515/botm.1981.24.11. 577
  27. Bai, N. R. (2010)., Evaluation of Gracilaria fergussonii for phytochemical analysis and antibacterial activity., Plant Archives, 10(2), 711-713.
  28. Febles, C. I., Arias, A. and Gil-Rodriguez, M. C. (1995)., In vitro study of antimicrobial activity in algae (Chlorophyta, Phaeophyta and Rhodophyta) collected from the coast of Tenerife (in Spanish)., Anuario del Estudios Canarios, 34, 181-192.
  29. Sastry, V. M V. S. and Rao, G. R. K. (1994)., Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Journal of Marine Botany, 37, 357-360. DOI: https://doi.org/10.1515/botm. 1994.37.4.357., undefined
  30. Wang, Y., Xu, Z, Bach, S. J. and McAllister, T. A. (2009)., Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins., Asian Australas Journal of Animal Science, 22(2), 238-245. DOI: https://doi.org/10.5713/ajas.2009.80213
  31. Karabay-Yavasoglu, N.U., Sukatar, A. Ozdemir G. and Horzum. Z. (2007)., Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens., Phytotherapy Research, 21, 153-156. DOI:10. 1002/ptr.2045
  32. Arguelles, E. D. and Sapin, A. B. (2020)., In vitro antioxidant, alpha-glucosidase inhibition and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta)., Asia-Pacific Journal of Science and Technology, 25(03), 84-92. DOI: https://doi.org/10.14456 /apst.2020.30
  33. Ambreen, A., Hira, K., Ruqqia, A., & Sultana, V. (2012)., Evaluation of biochemical component and antimicrobial activity of some seaweeeds occurring at Karachi coast., Pakistan Journal of Botany, 44(5), 1799-1803.
  34. Gheda, S., El-Sheekh, M. and Abou-Zeid, A. (2018)., In vitro anticancer activity of polysaccharide extracted from the red alga Jania rubens against breast and colon cancer cell lines., Asian Pacific Journal of Tropical Medicine, 11(10), 583-589. DOI: 10.4103/1995-7645.244523
  35. Hussain, E., Wang, L. J., Riaz, S., Butt, G. Y. & Shi, D. Y. (2016)., A review of the components of brown seaweeds as potential candidates in cancer therapy., Royal Society of Chemistry Advances, 6, 12592-610. DOI: https://doi.org/ 10.1039/C5RA23995H
  36. Moo-Puc, R., Robledo, D. and Freile-Felegrin, Y. (2011)., Improved antitumoral activity of extracts derived from cultured Penicillus dumetosus., Tropical Journal of Pharmaceutical Research, 10, 177-185. DOI: 10.1155/ 2011/969275
  37. Matteo, D. A., Stefania, S., Raffaella, R., Serena, R., Bianca, C. & Luciana, R. (2020)., In vitro evaluation of antimicrobial and antioxidant activities of algal extracts., Italian Journal of Animal Science, 19(1), 103-113. DOI: 10.1080/1828051X.2019.1703563
  38. Dongfei, T., Ruojing, W., Ming, L., & Yuexin, L. (2002)., Studies on chemical compositions and antimicrobial activity of volatile oil of Dictyophora echinovolvata., Jun wu xi Tong= Mycosystema, 21(2), 228-233.
  39. Shanmugam, S. K., Kumar, Y., Sardar, Y. K. M., Gupta, V. and Clercq, D. E. (2010)., Antimicrobial and Cytotoxic activities of Turbinaria conoides (J. Agardh) Kuetz., Iranian Journal of pharmaceutical research, 9(4), 411-416
  40. Paul, V. J. and Fenical, W. (1986)., Chemical defense in tropical green algae, order Caulerpales., Marine Ecology Progress Series, 34, 157-169.
  41. Wan Razarinah W. A. R., Rizlan Ross, E.E., Nor Farinna, Abdul Rahim, Faridon B. S. and. Radzun, Kh. A. (2018)., Antimicrobial Activity of Marine Green Algae Extract against Microbial Pathogens., Malaysian Journal of Biochemistry and Molecular Biology, 2, 42-46.
  42. Christobel, G. O., Lipton, A.P., Aishwarya, M.S., Sarika A. R. and Udayakumar, A. (2011)., Antibacterial activity of aqueous extract from selected macroalgae of Southwest coast of India., Seaweed Research and Utilisation, 33 (1&2), 67-75.
  43. Aknin, M., Miralles, J., & Kornprobst, J. M. (1990)., Sterol and fatty acid distribution in red algae from the Senegalese coast., Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 96(3), 559-563.
  44. Orcutt, D. M. and Richardson, B. (1970)., Sterols of Oocystis polymorpha, a green algae. Steroids., 16(4), 429-446. DOI: 10.1016/s0039-128x(70)80125-8.
  45. Ramesh, N., Viswanathan, M. B., Selvi, V. T. and Lakshmanaperumalsamy, P. (2004)., Antimicrobial and phytochemical studies on the leaves of Phyllanthus singampattiana (Sebastine and AN Henry) Kumari and Chandrabose from India., Journal of Medicinal Chemistry Research, 13, 348-360. DOI: 10.1007/s00044-004-0040-8.
  46. Venkatesan, M., Viswanathan, M. B., Ramesh, N. and Lakshmanaperumalsamy, P. (2005)., Antibacterial and phytochemical studies on the stem of Suregada angustifolia from Peninsular India., Pharmaceutical Biology, 43, 201-204. DOI: 10.1080/13880200590928753.