International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Growth, Total Lipid content and Fatty Acid Profile of a Native Strain of the Freshwater Oleaginous Microalgae Ankistrodesmus falcatus (Ralf) grown under Salt Stress Condition

Author Affiliations

  • 1Department of Biotechnology, Gauhati University, Guwahati - 781014, Assam, INDIA
  • 2 Department of Chemistry, Gauhati University, Guwahati - 781014, Assam, INDIA

Int. Res. J. Biological Sci., Volume 1, Issue (8), Pages 27-35, December,10 (2012)

Abstract

Growth, fatty acid compositions and calorific value of a native freshwater oleaginous microalgae A.falcatus was studied in batch culture at light intensity 40 µ mol photons/m/s, temperature 25 ± 2 C and 16:8 h light and dark diurnal cycles. Improved growth and total lipid contents were determined with the culture grown under salinity up to 160 mM. The highest specific growth (µ=0.313 d-1) and least doubling time (T=2.21 days) with maximum increase in cell numbers (29.0 x 10 ml) were recorded in medium supplemented with 160 mM of NaCl compared to control medium (µ=0.209 d-1, T=3.32 days and 15.2 x 10 ml-1 respectively). Improved total lipid (55.3%), carbohydrate (14.5%) and protein (4.8%) contents were also determined in the culture under salinity compared to control medium (lipid 38.3%, carbohydrate 12.6% and protein 3.1% respectively). C16:0, C18:1 and C18:3 were found to be the major fatty acid components of the lipid content. Marginal increase in C18:1 (30.5%) was observed in culture grown under salinity stress. With maximum energy value of 27.9 ± 0.15 kJg-1, a close correlation (R = 0.949) between lipid content and calorific value was observed. With further augmentations of lipid content and improved fatty acids, the native microalga strain could be a potent candidate for biofuel production.

References

  1. Borowitzka M. A. and Moheimani N. R., Sustainable biofuels from algae, Mitig. Adapt. Strateg. Glob. Change., (2011)
  2. (doi: 10.1007/s11027-010-9271-9) 2.Hill J., Nelson E., Tilman D., Polasky S. and Tiffany D., Environmental, economic, and energetic costs and benefits of biodiesel and bioethanol fuels, PNAS, 30, 11206-11210 (2006)
  3. Brennan L. and Owende P., Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557-577 (2010)
  4. Piccolo T., Aquatic biofuels, GlobeFish-FIIU, (2008)
  5. (http://www.globefish.org/files/Aquaticbiofuels_638.pdf). 5.Walkar D. A., Biofuels – for better or worse?, Ann. Appl. Biol., 156, 319-327 (2010)
  6. Schenk P., Thomas-Hall S., Stephens E., Marx U., Mussgnug, J., Posten C., Kruse O. and Hankamer B., Second generation biofuels: High efficiency microalgae for biodiesel production, BioEnerg. Res., 20-43 (2008)
  7. Searchinger T., Heimlich R., Houghton R. A., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D. and Yu, T. H., Use of US croplands for biofuels increases greenhouse gases through emissions from land use change, Science Express, 1-6, (2008)
  8. (doi:10.1126/science.1151861) 8.Singh A., Nigam P.S. and Murphy J.D., Mechanism and challenges in commercialization of algal biofuels, Bioresour Technol., 102, 26-34 (2010)
  9. Anandhi P. M. R., and Shaleesha A. S., Microalgae as oil producer for biofuel applications, Res, Jour. Recent Sci., 1(3), 57-62 (2012)
  10. Chisti Y., Biodiesel from microalgae, Biotechnol. Adv., 25, 294-306 (2007)
  11. Li Q., Du W. and Liu D., Perspectives of microbial oils for biodiesel production, Appl. Microbiol. Biotechnol.80, 749-756 (2008)
  12. Rodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., Bonni G. and Mario R. T., Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100-112 (2009)
  13. Mata T., Martins A. A. and Caetano N. S., Microalgae for biodiesel production and other applications: A review, Renew. Sust. Energ. Rev., 14, 217-232 (2010)
  14. Spolaore P., Joannis-Cassan C., Duran E. and Isambert A., Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87-96 (2006)
  15. Miao X. and Wu Q., High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides, J. Biotechnol., 110, 85-93 (2004)
  16. Pirt S.J., Lee Y.K., Walach M.R., Pirt M.W., Balyuzi H.H. and Bazin M.J., A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: Design and performance, J. Chem. Technol. Biotechnol., 33B, 35-58 (1983)
  17. Kosaric N. and Velikonja J., Liquid and gaseous fuels from biotechnology: Challenges and opportunities, FEMS Microbiol. Rev., 16, 111-142 (1995)
  18. Illman A.M., Scragg A.H. and Shales S.W., Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635 (2000)
  19. Pienkos P.T. and Darzins A., The promise and challenges of micro-algal derived biofuels, Biofuels Bioprod. Bioref., 431-440 (2009)
  20. Pokoo-Aikins G., Nadim A., EI-Halwagi M. M. and Mahalec V., Design and analysis of biodiesel production from algae grown through carbon sequestration, Clean. Tech. Environ. Policy, (2009)
  21. (doi:10.1007/s10098-009-0215-6) 21.Melis A. and Happe T., Hydrogen production, Green algae as a source of energy, Plant Physiol., 127, 740-748 (2001)
  22. Hu Q., Milton S.M., Jarvis E., Ghirardi M., Posewitz M., Seibert M. and Darzins A., Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances, Plant J., 54, 621-639 (2008)
  23. Gong Y. and Jiang M., Biodiesel production with microalgae as feedstock: From strains to biodiesel, Biotechnol. Lett., 33, 1269-1284 (2011)
  24. Clarens A.F., Resurreccion E.P., White M.A. and Colosi L.M., Environmental life cycle comparison of algae to other bioenergy feedstocks, Environ. Sci. Technol., 44, 1813-1819 (2010)
  25. Pulz O., Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol., 65, 635-648 (2004)
  26. Lv J.M., Cheng L.H., Xu X.H., Zhang L. and Chen H.L., Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol., 101, 6797-6804 (2010)
  27. Int. Res. J. Biological Sci. International Science Congress Association 3427.Griffiths M.J. and Harrison S.T.L., Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21(5), 493-507 (2009)
  28. Abou-Shanab R.A.I., Hwang J.H., Cho Y., Min B. and Jeon B.H., Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production, Appl. Energy., 88, 3300-3306 (2011)
  29. Pérez M.V.J., Castillo P.S., Romera O., Moreno D.F. and Martínez C.P., Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure, Enzyme Microb. Technol., 34, 392-398 (2004)
  30. Odlare M., Nehrenheim E., Ribe V., Thorin E., Gavare M. and Grube M., Cultivation of algae with indigenous species – potentials for regional biofuel production, Appl. Energy., 88, 3280-3285 (2011)
  31. Sanchez S., Martinez M. E. and Espinola F., Biomass production and biochemical variability of the marine microalga Isochrysis galbana in relation to culture medium, Biochem. Eng. J., 13-18 (2000)
  32. Day J. G., Slocombe S. P. and Stanley M. S., Overcoming biological constraints to enable the exploitation of microalgae for biofuels, Bioresour. Technol., (2011)
  33. (doi:10.1016/j.biortech.2011.05.033) 33.Araujo G. S., Matos L. J. B. L., Goncalves L. R. B., Fernandes F. A. N. and Farias V. R. L., Bioprospecting for oil producing microalgal strains: Evaluation of oil and biomass production for ten microalgal strains, Bioresour. Technol., 102, 5248-5250 (2011)
  34. Rao A. R., Dayananda C., Sarada R., Shamala T. R. and Ravishankar G. A., Effect of salinity on growth of green alga Botryococcus braunii and its constituents, Bioresour. Technol., 98, 560-564 (2007)
  35. Reitan K. I., Rainuzzo J. R. and Olsen Y., Effect of nutrient limitation on fatty acid and lipid content of marine microalgae, J. Phycol., 30(6), 972-979 (1994)
  36. Lebsky V. K., Gonzalez-Bashan L. E. and Bashan Y., Ultrastructure of co-immobilization of the microalga Chlorella vulgaris with the plant growth - promoting bacterium Azospirillum brasilense and with its natural associative bacterium Phyllobacterium myrsinacearum in alginate beads, Can. J. Microbiol., 47, 1-8 (2001)
  37. de-Bashan L. E., Bashan Y., Moreno M., Lebsky V. K. and Bustillos J. J., Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense, Can. J. Microbiol., 48, 514-521 (2002)
  38. Liu Y., Ruan R. and Kong Q., Mass culture of high oil content microalgae on wastewater and power plant flue gases, Chin. J. Bioprocess Eng., 29-33 (2008)
  39. Knothe G., Improving biodiesel fuel properties by modifying fatty ester composition, Energy Environ. Sci., 759-66 (2009)
  40. Moser B. and Vaughn S. F., Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production, Biomass and Bioenrgy., 37, 31-41(2012)
  41. Stansell G. R., Gray V. M. and Sym S. D., Microalgal fatty acid composition: Implications for biodiesel quality, J. Appl. Phycol., (2011)
  42. (doi: 10.1007/s10811-011-9696-x) 42.Ramos M. J., Fernandez C. M., Casas A., Rodriguez L. and Perez A., Influence of fatty acid composition of raw materials on biodiesel properties, Bioresour. Technol., 100, 261-268 (2009)
  43. Boussiba S. and Vonshak A., Astaxanthin accumulation in the green algae Haematococcus pluvialis, Plant Cell Physiol., 32(7), 1077-1082 (1991)
  44. Kawai H., Motomura T. and Okuda K., Algal Culturing Techniques (Ed. Anderson R. A.), Elsevier Academic Press, Burlington, MA, USA, pp. 133-134 (2005)
  45. Levasseur M.P., Thomson A. and Harrison P.J., Physiological acclimation of marine phytoplankton to different nitrogen sources, J. Phycol., 29, 587–595 (1993)
  46. Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J., Protein measurement with the folin phenol reagent, J. Biol. Chem., 193, 265-275 (1951)
  47. Hedge J. E. and Hofreiter B. T. Methods of estimating starch and carbohydrate. In: Carbohydrate Chemistry (Ed. Whistler R. L. and Be Miller J. N.), 17th Edition, Academic Press, New York, pp.163-201 (1962)
  48. Bligh E. G. and Dyer W. J., A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917 (1959)
  49. Rodríguez Ruiz J., Belarbi E. H., García Sánchez J. L. and López Alonso D., Rapid simultaneous lipid extraction and transesterification for fatty acid analyses, Biotechnol. Techniques, 12, 689-691 (1998)
  50. Abdel-Rahman M. H. M., Ali R. M. and Said H. A., Alleviation of NaCl-induced effects on Chlorella vulgarisand Chlorococcum hunmicola by riboflavin application, Int. J. Agric. Biol., 7(1), 58-62 (2005)
  51. Hart B. T., Bailey P., Edwards R., Hortlek K., James K., McMohan A., Meredith C. and Swading K., A review of the salt sensitivity of the Australian fresh water biota, Hydrobiologia, 210, 105-144 (1991)
  52. Int. Res. J. Biological Sci. International Science Congress Association 35Sludia Universities Babes-Bolyai, Biologia, XLIX (2), 85-93 (2004)
  53. Dominguez-Bocanegra A. R., Legarreta I. G., Jeronimo F. M. and Campocosio A. T., Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis, Bioresour. Technol., 92, 209-214 (2004)
  54. Imamoglu E., Dalay M. C. and Sukan F.V., Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis, New Biotechnol., 26, 199-204 (2009)
  55. 55.Thompson G.A. Jr., Lipids and membrane function in green algae, Biochim. Biophys. Acta., 1302, 17–45 (1996)
  56. Liu J., Huang J., Fan K.W., Jiang Y., Zhong Y., Sun Z. and Chen F., Production potential of Chlorella zofingienesis as a feedstock for biodiesel, Bioresour. Technol., 101, 8658-8663 (2010)
  57. Liu J., Huang J., Sun Z., Zhong Y., Jiang Y. and Chen F., Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production, Bioresour. Technol., 102, 106-110 (2011)
  58. El-Baky H. H. A., El-Baz F. K. and El-Baroty G. S., Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina, Biotechnology, 3(1), 102-108 (2004)
  59. Ben-Amotz A., Tornabene T. and Willium T., Chemical profile of selected species of microalgae with emphasis on lipids, J. Phycol., 21, 72-81 (1985)
  60. Tsuzuki M., Ohnuma E., Sato N., Takaku T. and Kawaguchi A., Effects of CO concentration during growth on fatty acid composition in microalgae, Plant Physiology, 93, 851-856 (1990)
  61. Scragg A. H., Morrison J. and Shales S. W., The use of fuel containing Chlorella vulgaris in a diesel engine, Enzyme and Microbial Technol., 33, 884-889 (2003)
  62. Scragg A. H., Illman A. M., Carde A. and Shales S. W., Growth of microalgae with increased calorific values in tubular bioreactor, Biomass and Bioenergy, 23, 67-73 (2002)
  63. Bhola V., Desikan R., Santosh S. K., Subburamu K., Sanniyasi E. and Bux F., Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris, J. Biosci. Bioeng., 111 (3), 377-382 (2011)