International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

DNA profiling of unidentified human dead bodies from costal cartilage attached with sternum bone in Himachal Pradesh, India

Author Affiliations

  • 1DNA Unit, Regional Forensic Science Laboratory, Mandi, Himachal Pradesh, India
  • 2DNA Unit, Regional Forensic Science Laboratory, Mandi, Himachal Pradesh, India
  • 3DNA Unit, Regional Forensic Science Laboratory, Mandi, Himachal Pradesh, India

Res. J. Forensic Sci., Volume 12, Issue (1), Pages 1-8, January,29 (2024)

Abstract

Sternum bone is one of the most common exhibits received in forensic laboratories for the establishment of the identity of unidentified human dead bodies. However, the extraction of DNA from sternum bone is a multi-step process and time-consuming. The fleshy costal cartilage attached with sternum bone can be used as an alternative for DNA extraction. In the present study, DNA profiling from costal cartilage of one hundred nineteen sternum bones of unidentified dead bodies was done, as a part of casework analysis across seven years between 2014 to 2020.Most of the dead bodies were retrieved in conditions of advanced stages of decomposition and skeletonization. In the present study, the DNA was isolated from costal cartilage with Qiagen EZ1 Advanced XL BioRobotusing magnetic bead based method. The isolated DNA was quantified using agarose gel electrophoresis (0.8%) and subjected to multiplex PCR amplification using Power Plex® 21 System and Global Filer™ kits. The capillary electrophoresis of amplified products was done using 3130, 3500, and 3500 XL genetic analyzers. The data were analyzed using Gene Mapper® ID Software Version 3.2 and Gene Mapper™ ID ‑X Software v 1.6. Despite advanced stages of decomposition of the bodies, full DNA profiles were obtained from 115 out of 119 sternum bones. Hence, the fleshy costal cartilage of sternum bone can serve as an alternate for quick extraction of DNA as compared to hard sternum bones.

References

  1. Prahlow, J.A., Cameron, T., Arendt, A., Cornelis, K., Bontrager, A., Suth, M.S., Black, L., Tobey, R., Pollock, S., Stur, S., Cotter, K. and Gabrielse, J. (2017)., DNA testing in homicide investigations., Med. Sci. Law., 57(4), 179-191. https://doi.org/10.1177/0025802417721790.
  2. Kumar, N., Chauhan, A., Gupta, R., Maitray, A. and Sharma, D. (2019)., Effect of fire on DNA and its profiling in homicide cases., Forensic Res. Criminol. Int. J., 7(2), 90-94. https://doi.org/10.15406/frcij.2019.07.0268.
  3. Gin, K., Tovar, J., Bartelink, E.J., Kendell, A., Milligan, C., Willey, P., Wood, J., Tan, E., Turingan, R.S. and Selden, R.F. (2020)., The 2018 California wildfires: Integration of rapid DNA to dramatically accelerate victim identification., J. Forensic Sci.,65(3), 791-799. https://doi.org/10.1111/1556-4029.14284.
  4. Taki, T., Machida, M. and Shimada, R. (2019)., Trends of traffic fatalities and DNA analysis in traffic accident investigation., IATSS Res., 43(2), 84-89. https://doi.org/10.1016/j.iatssr.2019.05.001.
  5. Goodwin, W.H. (2017)., The use of forensic DNA analysis in humanitarian forensic action: The development of a set of international standards., Forensic Sci. Int., 278, 221-227. https://doi.org/10.1016/j.forsciint.2017.07.002.
  6. Budowle, B., Bieber, F.R. and Eisenberg, A.J. (2005)., Forensic aspects of mass disasters: Strategic considerations for DNA-based human identification., Leg. Med., 7(4), 230-243. https://doi.org/10.1016/j.legalmed. 2005.01.001.
  7. Alonso, A., Martin, P., Albarrán, C., Garcia, P., Fernandez de Simon, L., Jesús Iturralde, M., Fernández-Rodriguez, A., Atienza, I., Capilla, J., García-Hirschfeld, J., Martinez, P., Vallejo, G., García, O., García, E., Real, P., Alvarez, D., León, A. and Sancho, M. (2005)., Challenges of DNA profiling in mass disaster investigations., Croat. Med. J., 46(4), 540-548.
  8. Prinz, M., Carracedo, A., Mayr, W.R., Morling, N., Parsons, T.J., Sajantila, A., Scheithauer, R., Schmitter, H. and Schneider, P.M. (2007)., DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI)., Forensic Sci. Int. Genet., 1(1), 3-12. https://doi.org/10.1016/j.fsigen.200 https://doi.org/10.4314/aja.v6i2.160496.6.10.003.
  9. Roewer, L. (2013)., DNA fingerprinting in forensics: Past, present, future., Investig. Genet., 4, 22. https://doi.org/10.1186/2041-2223-4-22.
  10. Biesecker, L.G., Bailey-Wilson, J.E., Ballantyne, J., Baum, H., Bieber, F.R., Brenner, C., Budowle, B., Butler, J.M., Carmody, G., Conneally, P.M., Duceman, B., Eisenberg, A., Forman, L., Kidd, K.K., Leclair, B., Niezgoda, S., Parsons, T.J., Pugh, E., Shaler, R., Sherry, S.T., Sozer, A. and Walsh, A. (2005)., DNA identifications after the 9/11 World Trade Center attack. Sci., 310(5751), 1122-1123. https://doi.org/10.1126/science.1116608., undefined
  11. Nedić, D. and Pilija, V. (2020)., The challenges of forensic medical expertise in aircraft accidents: A case report., J. Indian Acad. Forensic Med., 42(1), 63-65. https://doi.org/10.5958/0974-0848.2020.00016.0.
  12. Roberts, L.G., Spencer, J.R. and Dabbs, G.R. (2017)., The effect of body mass on outdoor adult human dcomposition., J. Forensic Sci., 62(5), 1145-1150. https://doi.org/10.1111/1556-4029.13398.
  13. Emmons, A.L., Mundorff, A.Z., Keenan, S.W., Davoren, J., Andronowski, J., Carter, D.O. and DeBruyn, J.M. (2020)., Characterizing the postmortem human bone microbiome from surface-decomposed remains., PLoS One., 15(7), e0218636. https://doi.org/10.1371/journal.pone.0218636.
  14. Pinheiro, J. (2006)., Decay Process of a Cadaver. In: Schmitt, A., Cunha, E., Pinheiro, J. (eds)., Forensic Anthropology and Medicine.
  15. Almulhim, A. M. and Menezes, R. G. (2022)., Evaluation of Postmortem Changes., May 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 32119351.
  16. Shrestha, R., Kanchan, T. and Krishan, K. (2022)., Methods of Estimation of Time Since Death., May 15. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 31751057.
  17. Niederegger, S. and Mall, G. (2021)., Flies do not jump to conclusions: Estimation of the minimum post-mortem interval for a partly skeletonized body based on larvae of Phormia regina (Diptera: Calliphoridae)., Insects., 12(4), 294. https:// https://doi.org/10.3390%2Finsects12040294
  18. Thomas, T.B., Finley, S.J., Wilkinson, J.E., Wescott, D.J., Gorski, A. and Javan, G.T. (2017)., Postmortem microbial communities in burial soil layers of skeletonized humans., J. Forensic Leg. Med., 49, 43-49. https://doi.org/10.1016/j.jflm.2017.05.009.
  19. Alves-Cardoso, F. and Assis, S. (2018)., Can osteophytes be used as age at death estimators? Testing correlations in skeletonized human remains with known age-at-death., Forensic Sci. Int., 288, 59-66. https://doi.org/10.1016/j.forsciint.2018.04.034.
  20. Ellingham, S. and Adserias-Garriga, J. (2019)., Complexities and considerations of human age estimation, in: Age Estimation. A Multidisciplinary Approach., Elsevier, pp. 1–15. https://doi.org/10.1016/B978-0-12-814491-6.00001-7.
  21. Carrasco, P., Inostroza, C., Didier, M., Godoy, M., Holt, C.L., Tabak, J. and Loftus, A. (2020)., Optimizing DNA recovery and forensic typing of degraded blood and dental remains using a specialized extraction method, comprehensive qPCR sample characterization, and massively parallel sequencing., Int. J. Legal Med., 134, 79–91. https://doi.org/10.1007/s00414-019-02124-y.
  22. Nuzzolese, E. (2018)., Dental autopsy for the identification of missing persons., J. Forensic Dent. Sci.,10(1), 50-54. https://doi.org/10.4103/jfo.jfds_33_17.
  23. Rathmann, H. and Reyes-Centeno, H. (2020)., Testing the utility of dental morphological trait combinations for inferring human neutral genetic variation., Proc. Natl. Acad. Sci., 117(20), 10769-10777. https://doi.org/10.1073/pnas.1914330117.
  24. Kim, J-H., Jeon, M., Song, J-S., Lee, J-H., Choi, B-J., Jung, H-S., Moon, S.J., DenBesten, P.K. and Kim, S-O. (2014)., Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth., PLoS One., 9(7), e102893. https://doi.org/10.1371/journal.pone.01028 93.
  25. Oeschger, E.S., Kanavakis, G., Halazonetis, D.J. and Gkantidis, N. (2020)., Number of teeth is associated with facial size in humans., Sci. Rep., 10(1), 1820. https://doi.org/10.1038/s41598-020-58565-8.
  26. Girish, K., Rahman, F. and Tippu, S. (2010)., Dental DNA fingerprinting in identification of human remains., J. Forensic Dent. Sci., 2(2), 63-68. https://doi.org/10.4103/0975-1475.81284.
  27. Cafiero, C., Re, A., Stigliano, E., Bassotti, E., Moroni, R. and Grippaudo, C. (2019)., Optimization of DNA extraction from dental remains., Electrophoresis., 40(14), 1820–1823. https://doi.org/10.1002/elps.201900142.
  28. Krishan, K., Kanchan, T., & Garg, A. K. (2015)., Dental evidence in forensic identification–An overview, methodology and present status., The open dentistry journal, 9, 250.
  29. Sternal Foramen: A Case Report. https://www.researchgate.net/publication/307836131_STERNAL_FORAMEN_A_CASE_REPORT (Accessed February08, 2023)., undefined, undefined
  30. Leite, V.M., de S. Plácido, C.F., Gusmão, C.L.V., Soriano, E.P., Almeida, A.C., Antines, A.A. and Petraki, G.G.P. (2020)., Sternal variation: Anatomical-forensic analysis., Int. Arch. Med., 13(10), 1-12.https://doi.org/10.3823/2626.
  31. Lynch, M. (2003)., God’s signature: DNA profiling, the new gold standard in forensic science., Endeavour., 27(2), 93-97. https://doi.org/10.1016/S0160-9327(03)00068-1.
  32. EZ1® (2023)., Advanced XL User Manual. https://www.qiagen.com/us/resources/download.aspx?id=c9ecd500-147b-4a8e-ae71-3dc86cd3d17a&lang=nb-NO (Accessed February08, 2023)., undefined
  33. EZ1&2® (2022)., DNA Investigator® Kit Handbook., https://www.qiagen.com/us/products/human-id-and-forensics/investigator-solutions/ez1-2-dna-investigator-kit (Accessed February 08, 2023).
  34. PowerPlex® (2023)., 21 System., https://www.promega.in/resources/pubhub/ebrochures/powerplex-21-system/ (Accessed February08, 2023).
  35. GlobalFilerTM and GlobalFilerTM IQC PCR (2023)., Amplification KitsUser Guide., https://assets.thermofisher.com/TFS-Assets/LSG/manuals/ 4477604.pdf (Accessed February08,2023).
  36. News (2023)., Climate of Himachal Pradesh., https://www.himachalworld.com/himachal-geography/ climate-conditions-in-himachal.html (Accessed February08, 2023).
  37. Kumar, N., Maitray, A., Gupta, R., Sharma, D. and Shukla, S.K. (2017)., Effect of preservation on DNA and its profiling from sternum bone from unidentified bodies., J. Punjab Acad. Forensic Med. Toxicol., 17(2), 77–79. https://doi.org/10.5958/0974-083X.2017.00016.4.
  38. De Donno, A., Mele, F., Baldassarra, S.L., Martini, A., Lauretti, C., Favia, M., Introna, F. and Santoro, V. (2020)., DNA extraction from sternum bone for identification of a saponified body: Use of a modified protocol., AnthropolAnz.,77(3), 235–242. https://doi.org/10.1127/ anthranz/2020/1162.
  39. Odukoya, A.S.O., Ajani, O. and Adelodun, T.S. (1970)., Long term effects of formaldehyde preservation on subsequent bone maceration procedures: a comparative study between cold and hot water maceration., Anat. J. Africa., 6(2), 1000–1008. https://doi.org/10.4314/ aja.v6i2.160496.