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Abstract 

The use of Radon (Rn) gas as an effective precursor for earthquake detection have been well established, but the correlation 

of Rn time series with other climatic parameters such as rainfall, humidity is often neglected. But thes

an outstanding role in the domain of pre-seismic surveillance. Fractal analysis of complex time series data provides efficient 

means of characterizing and quantifying the long range temporal correlations present in the signal. In this 

applied robust nonlinear tools like Detrended Fluctuation Analysis (DFA), Multifractal DFA (MFDFA) to characterize time 

series data of Rn, temperature, rainfall and humidity for the last 10 years ranging from September 2005

we have used the Multifractal Detrended Cross

association present between the different time series data mentioned above. The results show that the Rn time series has the 

strongest amount of correlation with the temperature time series data. 

results that should be taken care of as a caution before confident identification of occurrence of earthquakes
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Introduction 

Radon is a chemical element bearing a symbol Rn and having 

atomic no. 86. It is a radioactive noble gas occurred naturally in 

the environment and is obtained from the decay of Ur via Ra. 

Rn has 39 isotopes from 
193

Rn to 
231

Rn but among them the 

most stable one is 
222

Rn having a half-life of 3.82 days. Rn 

only 3 radioactive isotopes, namely: 
222

Rn (3:82d), 

and 
219

Rn(~ 4s), in natural environment. In nature, the 4 isotopes 
218,219,220,222

Rn arise as a degrading product of

and 
226

Ra respectively
1
.  

 

Rn is the main cause of most of the radioactivity in the 

atmosphere at sea level. As a radio-active and chemically 

inactive gas, Rn releases from soil and rupture of the rocks 

under the substratum in the ground. In soil, 

diluted to the atmosphere
2
. Besides soil, Rn also exists in 

lumped rock, building materials, subterranean and shallow 

waters
2,3

. Due to a number of factors like distribution of Ur 

(especially 
226

Ra in the same series) in the soil and in 

substratum, soil porosity, humidity, micro-cracks of substratum, 

rainfall, air temperature etc the migration of Rn upwards are 

affected. While all generated Rn atoms are diluted in fluids, 

only a percentage of Rn emerge porous media and fragmented 

rock and dissolve into the pore's fluid
1,3

. 

 

Different methodologies have been proposed in the literature for 

monitoring non-tectonic variables of both geophysical and 

geochemical nature, of which, Rn gas monitoring proved to be 

very promising among all other methods, due to its connection 

Journal of Earth Sciences _______________________________________

(2018) 

Association   

radon fluctuation and local climate parameters - a multifractal cross

correlation study 
Alpa Kar, Shankha Sanyal* and Dipak Ghosh 

School of Studies in Environmental Radiation and Archaeological Sciences, Department of Physics, Jadavpur University,

ssanyal.sanyal2@yahoo.com 
 

Available online at: www.isca.in 
September 2018, revised 20th November 2018, accepted 15th December 201

The use of Radon (Rn) gas as an effective precursor for earthquake detection have been well established, but the correlation 

of Rn time series with other climatic parameters such as rainfall, humidity is often neglected. But thes

seismic surveillance. Fractal analysis of complex time series data provides efficient 

means of characterizing and quantifying the long range temporal correlations present in the signal. In this 

applied robust nonlinear tools like Detrended Fluctuation Analysis (DFA), Multifractal DFA (MFDFA) to characterize time 

series data of Rn, temperature, rainfall and humidity for the last 10 years ranging from September 2005

we have used the Multifractal Detrended Cross-Correlation Analysis, MFDXA for the assessment of the degree of 

association present between the different time series data mentioned above. The results show that the Rn time series has the 

correlation with the temperature time series data. This study with rigorous methods presents interesting 

results that should be taken care of as a caution before confident identification of occurrence of earthquakes
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Radon is a chemical element bearing a symbol Rn and having 

It is a radioactive noble gas occurred naturally in 

the environment and is obtained from the decay of Ur via Ra. 

Rn but among them the 

life of 3.82 days. Rn has 

Rn (3:82d), 
220

Rn(55s) 

In nature, the 4 isotopes 

as a degrading product of
218

At,
223

Ra,
224

Ra, 

is the main cause of most of the radioactivity in the 

active and chemically 

Rn releases from soil and rupture of the rocks 

, 10% of the Rn is 

. Besides soil, Rn also exists in 

lumped rock, building materials, subterranean and shallow 

. Due to a number of factors like distribution of Ur 

Ra in the same series) in the soil and in 

cracks of substratum, 

rainfall, air temperature etc the migration of Rn upwards are 

While all generated Rn atoms are diluted in fluids, 

only a percentage of Rn emerge porous media and fragmented 

fferent methodologies have been proposed in the literature for 

tectonic variables of both geophysical and 

geochemical nature, of which, Rn gas monitoring proved to be 

very promising among all other methods, due to its connection 

with the highly deformed tectonic region and various 

advantages in its detection as well.

earthquakes, Rn has also been utilized extensively. Rn

from its production region and is almost chemically inactive. It 

can be easily detected even at low levels

 

The earthquake is a trembling of the ground usually stimulated 

by the liberation of underground tension along the rifts. 

gas is constantly formed within the rock of the earth as an 

intermediary decay outcome of the

The gas fluxes along the faults or fractures during the stress

strain occurring in the earth’s crust as a result of an earthquake. 

These transport the Rn gas from its birthplace towards the 

surface of the earth
5
. The half-life of Rn gas [T

on the higher side and hence it can spread at the decreasing rate 

in ground soil. Hence the Rn concentrations that are counted 

must be several kilometres away from the original source. The 

observation of Rnin consistency analogous to the seismic 

activity has been the food for study in a number of experiments 

around the globe
6,7

. Different instruments were used for this 

purpose like alpha guard, ZnS(Ag) detector, Lucas type 

scintillation chamber, SSNTD
8-13

Antarctica, Mexico, East Europeetc. have proven to be an 

important indicator in the use of radon flux in pre

detection
14-16

. 

 

Because of increase in crustal confining, Rn anomalous 

concentration may be induced, that extract the Rn gas into the 

atmosphere at an intensify rate before an earthquake, according 

to King's (1978) compression mechanism
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of Rn time series with other climatic parameters such as rainfall, humidity is often neglected. But these parameters do play 

seismic surveillance. Fractal analysis of complex time series data provides efficient 

means of characterizing and quantifying the long range temporal correlations present in the signal. In this work, we have 

applied robust nonlinear tools like Detrended Fluctuation Analysis (DFA), Multifractal DFA (MFDFA) to characterize time 

series data of Rn, temperature, rainfall and humidity for the last 10 years ranging from September 2005-August 2014. Also, 

Correlation Analysis, MFDXA for the assessment of the degree of 

association present between the different time series data mentioned above. The results show that the Rn time series has the 

This study with rigorous methods presents interesting 

results that should be taken care of as a caution before confident identification of occurrence of earthquakes. 

hly deformed tectonic region and various 

advantages in its detection as well. For the prognosis of 

earthquakes, Rn has also been utilized extensively. Rn drifts 

from its production region and is almost chemically inactive. It 

can be easily detected even at low levels
1-3

. 

The earthquake is a trembling of the ground usually stimulated 

by the liberation of underground tension along the rifts. 
222

Rn 

nstantly formed within the rock of the earth as an 

intermediary decay outcome of the 
238

U radioactive sequence. 

The gas fluxes along the faults or fractures during the stress-

strain occurring in the earth’s crust as a result of an earthquake. 

rt the Rn gas from its birthplace towards the 

life of Rn gas [T1/2 = 3.82 days] is 

on the higher side and hence it can spread at the decreasing rate 

in ground soil. Hence the Rn concentrations that are counted 

l kilometres away from the original source. The 

observation of Rnin consistency analogous to the seismic 

activity has been the food for study in a number of experiments 

. Different instruments were used for this 

ZnS(Ag) detector, Lucas type 
13

. Active fault areas like 

Antarctica, Mexico, East Europeetc. have proven to be an 

important indicator in the use of radon flux in pre-seismic event 

al confining, Rn anomalous 

concentration may be induced, that extract the Rn gas into the 

atmosphere at an intensify rate before an earthquake, according 

to King's (1978) compression mechanism
17

. Hauksson reported 
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that for earthquakes of higher magnitude, Rn anomalies occur at 

larger epicentral distances, while the precursor time is lesswhen 

the distance between the epicenter and the Rn monitoring 

station is small
18

. For seismic events, Rn anomaly can act as a 

precursor. Hence the time series of Rn fluctuation pattern bears 

a lot of significance. Walia have found a stronger relationship 

between Rn incongruity and seismic parameters in N–W 

Himalaya, a distinct increase in 
222

Rn concentration in the 

thermal spring of Bakreswar have been observed before the 

tsunami in Indonesia in 2004 having 9.1 magnitude 

earthquake
19-21

. Earthquake predecessor study associating soil 

and subsoil water Rn measurement has been reported by 

Ramola
22

. Pre - seismic trademarks in the coast of Rn gas, in the 

lower part of the Himalayan region at an elevation of 800 

meters have been observed by Barman et.al overhead the mean 

sea level
23

. To study the reservoir-triggered earthquakes in the 

Koyna–Warna region, alongside the west coast of India, 

Reddyhave performed a study on soil radon
24

. Before the 

current earthquakes in Nepal and in the eastern part of India 

mainly on 25thof April in Nepal having magnitude 7.8
25

, 

exceptional variations in the datasets of radon have been noticed 

during the track period. 

 

Thus, we have seen that a number of earlier works which 

supports the fact that Rn anomaly provides important clues as a 

precursor of earthquake. Radon fluctuation has been identified 

by celebrated nuclear scientist Charpak as the most efficient 

precursor of earthquake. However this fluctuation is often 

vitiated by local climatic parameters such as temperature, 

rainfall, relative humidity etc. But these parameters are not often 

taken into consideration from the point of view of any rigorous 

scientific analysis. For the first time, we have tried to correlate 

the changes of local climatic parameters with radon gas 

anomaly using latest nonlinear techniques. We present in this 

paper a correlation study in non-linear scenario between radon 

concentration and climate parameters like temperature, rainfall, 

humidity etc. using current predicament of the art skills such as 

MFDXA (Multifractal Detrended Cross-Correlation Analysis)
26

. 

 

The word ‘fractal’ was first introduced by Beniot Mandelbrot
27

 

from the Latin adjective fractus (the corresponding Latin verb 

frangere means “to break” to create irregular fragments) for 

indicating objects whose complex geometry cannot be 

distinguished by an integral dimension. Its ability to describe the 

irregular or shattered shape of natural features as well as 

complex objects that cannot be represented by traditional 

Euclidean geometry is the main attraction of fractal geometry. 

 

The Detrended Fluctuation Analysis technique extracts the 

scaling exponent corresponding to long-term correlated 

sequemce
28-31

. The other remarkable techniques
28-32

 are the 

time-evolvement of the fractal acreage, the Hurst exponent and 

the materialistic difference of heterogenous metrics of 

degeneration respectively. It is to be noted that these techniques 

can trace the memory patterns which are longer, concealed in 

the pre-earthquake time sequence. To study the fluctuations in 

earthquake related geoelectrical signals, the MFDFA algorithm 

have been applied by Telesca et.al
33

. The geophysical 

phenomenon is very complex and the earthquake-related 

geoelectrical variability is concealed by it and is conducted by 

completely unknown physical laws. The authors have shown 

that by means of Multifractal parameters, maximum asymmetry, 

width and range, the Multifractal analysis has led to a better 

understanding of the complexity. The Multifractility is mainly 

due to different long range correlations for small and large 

fluctuations. This was reported after considering worldwide data 

set of 91 Rn anomalies and randomly shuffling the surrogate 

series data. The multifractal singularity spectrum and the 

spectral width generated from therein helped in identifying the 

complexity values associated with each signal. Temporal 

correlations and Multifractal properties of long river discharge 

records were investigated around the globe from 41 

hydrological stations by Bunde et.al
34

. It was obtained that all 

the 41 records of Multifractal spectra can be explained by a 

’universal’ function τ(q), obtained from a generalization of the 

fluctuation exponent H and the width ∆α of the singularity 

spectrum respectively.  

 

In many earlier works, the outcomes of inconsistency of soil 

radongot from Kolkata [22°32′N and 88°24′E] and Jalpaiguri 

(26°32′N, 88°46′E) were reported
35,36

. The previous study on 

Kolkata region provided interesting results on the use of Rn 

fluctuation as an indicator of pre-seismic event, in spite of 

Kolkata which is not being located in seismically active fault 

zone. For comparing to the results of Kolkata, a new project was 

started at Jalpaiguri, West Bengal, and it is located in a zone 

which is seismically active.  It was seen that in the Jalpaiguri 

site, the average of the radon contamination was over the top, 

approximately near the factor of 40, thus more conclusively 

establishing the use of Rn gas anomaly as a precursor to 

earthquake, and its use as an earthquake surveillance monitor.  

 

Here, the scrutiny of Rntime series data for the last 10 years viz. 

September 2005 to August 2014 have been studied in the 

perspective of chaos based methods in nonlinear scenario to 

obtain reliable and precise information. Very few works have 

been reported where study of radon concentration and  local 

climatic parameters were made, Moreover, the methods used in 

these studies did not use nonlinear techniques essential for this 

kind of study. We analyze soil radon anomaly time series with 

MFDFA technique and also try to correlate the radon anomaly 

with that of temperature and relative humidity data using 

Multifractal cross correlation (MFDXA) technique.  

 

Experimental Details: Rn monitoring is done here by using a 

track etch method of cellulose nitrate film with the help of CR-

39plates which isa Solid State Nuclear Track Detector 

(SSNTD). The name of this allyl diglycol polycarbonate 

(C12H18O7) has been abbreviated from ‘Columbia Resin’, 

registered type no. 39. The CR-39 plates having size 1cm by1 

cm is slit and attached to the extremity of a cup having a tap and 

enclosed with acytomembrane which permits only Rn gas to 
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proceed. The dimensions of the cup are as follows:  Height is 

taken as 4.7 cm, Diameter is taken as 6.3cm and 5.9 cm at the 

open end and at the closed end respectively. The cup containing 

the SSNTDs is placed in a metal container (with both ends 

open) kept 70 cm inside earth surface. A layer of silica gel 

around the cup absorbs the moisture on the surface. In an 

undisturbed ambiance, exposing of the CR-39 plates are done 

for 48 hours and the plates are subjected to chemical etching. 

Etching of the plates are done in 6N NaOH solution; the time 

needed is 6 hours and the temperature needed is 70°C. The 

alpha particle tracks in the plates are scanned by Carl Zeiss 

Jenaval microscope by using 10x objective in concurrence with 

10x optic lens. The no. of tracks/cm
2 

for Radon is calculated in 

this manner. 
 

Methodology 

The fractal techniques have been applied as per the 

methodology given in our book "Musicality of Human Brain 

through Fractal Analytics"
37

. 
 

Detrended Fluctuation Analysis (DFA): There are total five 

steps involves in the generalized multifractal DFA (MF-DFA) 

procedure. Among them the first three steps are homogeneous to 

the conventional DFA procedure. Let us assume[x1, x2,...,xN]be 

a time series of length N and it is  non-stationary.  

 

Step 1: The first step involves changing the type of the as 

follows: 

 

)()( xxi k −=Υ ∑                       (1) 

 

Where average value of the signal is represented by x . 

 

Step 2: The integration reduces the finite data and the 

measurement level noise present in the experimental records. 

The entire length of the signal consists of certain no. of samples 

has been bisected into Ns number of sections. Then for sample 

size s and total length N of the signal, the segments are 
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the local RMS dissimilarity: 
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Step 4: The fluctuation function Fq(s) having the q-th form is 

represented as follows: 
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where q is an index and except zero which can take all possible 

values. Because if q = 0 then  the factor 1/q is infinite. This 

procedure can be repeated by varying the value of s. 

 

Step 5: The scaling behavior of the fluctuation function is 

obtained by the relation 
 

)( ~)( qh
q ssF

    
 

where h(q) is called the generalized Hurst exponent and can be 

expressed as the slope  of a double logarithmic plot. The 

monofractal scaling exponent α is obtained for q=2. A time 

series which is monofractal in nature is specified by unique h(q) 

for all values of q. The autocorrelation properties of the signal 

are represented by parameter α which is also called as scaling 

exponent. By following the NBT algorithm, DFA technique was 

applied, which gives a perceptible measure of long range 

temporal correlation (LRTC) which exists in the time series
38

.  

 

Scaling exponents having value greater than 0.5 and less than 1 

will be created by power-law behaviour when applied to any 

time series data having temporal correlation of long range order. 

In the time series the LRTC are more persistent i.e. decaying 

more slowly with time when the scaling exponent increases 

from 0.5 to 1. When the scaling exponent having a value greater 

than 1, power law behaviour is not revealed by the LRTC for a 

long time. Finally, when the scaling exponent = 1.5, this 

specifies Brownian noise andit is the integration of white noise. 

For all the Rn time series data, the DFA scaling exponent α 

values were figured out from eq. (5) 

 
Figure-1: Experimental Setup. 

(2) 

(5) 

(4) 

(3) 
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Multifractal DFA (MFDFA): Most of the time series signals 

that we observe in daily life can hardly be characterized by 

using a single scaling exponent; hence the need arises to 

quantify them using multiple scaling exponents based on their 

scaling properties. The Multifractal Detrending algorithm 

(MFDFA) was detailed as an offshoot of DFA while catering 

different scaling ratios
39

, for these more practical cases. The 

standard DFA procedure is reclaimed by putting q = 2 in eqn. 

(5).Our keen interest isto observe how the fluctuation functions 

Fq(s) which is q dependent, rely on the time scale s for different 

values of q. Hence, from step 2 to step 4must redo for several 

time scales s. It is clearly visible that Fq(s) will increase as s 

increases. Again, on the Detrended Fluctuation Analysis having 

order m,Fq (s) is dependent of and for s ≥ m+ 2,Fq(s) is 

explained only by construction.  Again, with distinct values of 

q, the earlier step is repeated. 

 

Step 5:  The double logarithmic plot of Fq(s) vs. s for each value 

of qanalyses the scaling pattern of fluctuation functions. Now, 

according to power-law,Fq(s) rises for large values of s, if the 

series xi is long-range power-law correlated. 

 

�����	~	�
����                 (6) 

 

The exponent h(q) depends on q generally. h(2) is identical with 

the Hurst exponent H for a stationary time series,. Thus the 

function h(q) is called as the generalized Hurst exponent. 

 

The relation between the generalized Hurst exponent h(q) of 

MFDFA and the classical scaling exponent τ(q) is  as follows: 

1)()( −= qqhqτ
                             (7) 

 

A monofractal series with long range correlation is specified by 

a single Hurst exponent H, while multifractal time series signal 

possess multiple Hurst exponents dependent on q.  

 

The relation between singularity spectrum f(α) and h(q) is given 

as follows 

(q)hqh(q)α ′+=
                (8) 

( ) ( ) 1+−= ]qhq[ααf
               (9) 

 

Where α denotes the singularity power or Holder exponent and 

f(α) specifies the acreage corresponding to the subset sequence 

that is specified by α. The span of the multifractal spectrum 

manifests the extent of scaling exponents. Quantitatively the 

spectra can be categorized by using least square method suitable 

to a quadratic function
40

in the neighbourhood of extreme 0α
, 

 

f (α) = P (α - α0)
2 
+ Q (α - α0) + R 

 

Where R is an add-on constant, R = f(α0) = 1 and Q = 0 for a 

magnificently consistent spectrum which measures the 

asymmetry value for the spectrum. The spectral width can be 

calculated by hypothesizing the appropriate quadratic curve to 

zero.  

 

Multifractal spectral span W is explained as follows, 

21 αα −=W
 

With
0)()( 21 == αα ff

 
 

The span of the parabola has given by the measurement of the 

entanglement of the signal. As W increases, the multifractality 

of the time series rises. For a monofractal time series, as h(q) 

does not depend on q,  the width has a value equal to zero. The 

origin of multifractality has been verified by the arbitrary 

shambling of the Rn time series data. Random shuffling of the 

raw data destroys all the correlations present in the signal which 

are of long range order by giving a completely uncorrelated 

signal in return. Thus a non-fractal scaling will be displayed by 

the shuffled data when subjected to multifractal analysis 

technique.  

 

For the10 points of q which were in between −5 to +5, variation 

function Fq(s) was acquired which is of qth order. For 

demolishing all the correlations present in the data which are of 

long range order, the values of time series have been randomly 

shuffled and the remaining part is the totally uncorrelated 

sequence. For the scales varying from 16 to 1024,in the plot for 

theRn time series, the regression double logarithmic scenario of 

ln (Fq(s)) vs. ln(s) averaging for divergentmerits of q [from q= -

3 to q= + 3] has been representedwhich is given in Figure-2(a-

b). The value of h(q)achieves from  the slope of the best suitable 

line obtained from the double logarithmic scenario of ln(Fq(s)) 

vs. ln(s). From Figure-2(b), it can be seen that with the changes 

in q, the time series has independents hambled values and thus 

having a definite slope[h(q)=H]for monofractal time series, 

which is the nothing but the Hurst exponent. 

 

Figure-3(a) shows the dissimilarities of h (q) with q for Rn time-

series for representative purpose. It is evident that the h (q) 

decreases with the increase of q, giving a proof of multifractal 

scaling in the Rn time series data. While for all values of q, the 

shuffled series shows a single value of h(q), while with q, the 

original Rn time series has varying values of h(q). As said 

earlier, from the span of the multifractal spectrum [f(α) vs α],the 

evaluation of the amount of multifractality present in the time 

series of various climatic parameters quantitatively is obtained. 

The original span of the signal is bigger than the shuffled span 

always and that can be seen from Figure-3(b). The shuffled 

series will show a peak nearby of 0.5at α0, in the plot of f(α) vs. 

α, if monofractal  nature exists in the shuffled data. 
 

The detrended cross-correlation analysis (DCCA) investigates 

the long-term cross-correlations between two non-stationary 

time series
41-44

. The multifractal features of two cross-correlated 

signals can be revealed by the Multifractal Detrended Cross-

Correlation Analysis (MF-DXA)
45-48

. 
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Figure-2(a): double logarithmic plot of Fq(s)

series. 

 

Figure-2(b): double logarithmic plot of Fq(s) vs. s for the 

shuffled data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3(a): The dissimilarity ofh(q) the Hurst exponent with 

the scaling parameter q and. 
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Figure-3(b): f (α) Vs α curve for indigenous and shambled 

time sequence. 

 

Multifractal Detrended Cross

(MFDXA): MFDXA method is a

MFDFA method
26

. Two data series x(i) and y(i) are represented 

here as 

X (i) ≡ [∑ 
����

�� - xavg] for i = 1 . . . N

Y (i) ≡ [∑ 
����

�� - xavg] for i = 1 . . . N

 

The following algorithm is similar to

we have to take 2Ns bins here. After averaging over 2Ns bins,we 

have got the qth order covariance Fq(s).

 

Fq (s) = {1/2Ns ∑ ����, ������
���

q/2
}

1/q  

 

Fq(s) increases as s increases, power law behaviour will 

represent by the function Fq(s) in the for

Fq (s) ~  s
λ(q)

. 

 

By taking λ(q) as the slope, ln Fq 

such scaling exists. The degree of cross

the two time series is denoted by the scaling exponent 

rests on q in general. As Fq blows up at q = 0,it is not possible to 

get the value of λ(0) directly. A logarithmic averaging 

procedure is applied to get Fq instead of the normal averaging 

procedure 

 

F0 (s) = {1/4Ns ∑ ����, ������
��� } ~ s

λ(0)

 

The method reduces to standard DCCA for q = 2. If

scaling exponentdoes not depend on q, then between the two 

time series, there exists the monofractal cross

the contrary, if the scaling exponent 

multifractal cross-correlations exists between two time series. 

Among the two time series x(i) and y(i), the degree of  cross

correlation is denoted by the scaling exponent 

 

The auto-correlation function is as follows:

C (τ ) = ⟨[x(i + τ ) − ⟨x⟩][x(i) − ⟨x⟩]⟩
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 curve for indigenous and shambled Rn 

Multifractal Detrended Cross-Correlation Analysis 

MFDXA method is a branch of the generalized 

Two data series x(i) and y(i) are represented 

] for i = 1 . . . N            (10) 

] for i = 1 . . . N 

The following algorithm is similar to MFDFA method, just that 

bins here. After averaging over 2Ns bins,we 

have got the qth order covariance Fq(s). 

                   
(11) 

Fq(s) increases as s increases, power law behaviour will 

represent by the function Fq(s) in the form 

q will rests on ln s linearly if 

such scaling exists. The degree of cross-correlation in between 

the two time series is denoted by the scaling exponent λ(q). λ(q) 

blows up at q = 0,it is not possible to 

(0) directly. A logarithmic averaging 

procedure is applied to get Fq instead of the normal averaging 

λ(0)
.           (12) 

The method reduces to standard DCCA for q = 2. Ifλ(q) the 

scaling exponentdoes not depend on q, then between the two 

monofractal cross-correlations. On 

if the scaling exponent λ(q) depends on q, the 

correlations exists between two time series. 

Among the two time series x(i) and y(i), the degree of  cross-

correlation is denoted by the scaling exponent λ(q).  

correlation function is as follows: 

⟩ ~ τ−γ
 .                            (13) 
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The cross-correlation function is as follows: 

Cx(τ ) = ⟨[x(i + τ ) − ⟨x⟩][y(i) − ⟨y⟩]⟩ ~ τ−γ
x  

 

Where γ and γx respectively denotes auto-correlation and cross

correlation exponents. Due to the superimposing of uneven and 

drifts on the composed data, usually straight calculation of these 

exponents are not proposed; rather the Detrended Fluctuation 

Analysis method is the authentic method to compute auto

correlation exponent, namely γ = 2 − 2h (q = 

between cross-correlation exponent, γx and scaling exponent 

λ(q) is as follows: γx= 2 − 2λ(q = 2)
50

. γx= 1for non

data while γx= -1 for a strongly correlated data. Thus, the data is 

more correlated as lower as the value of γ and 

 

With q, for the two particular samples Rn concentration and 

temperature, Figure-4 describes the dissimilarity of cross 

correlation scaling exponent λ (q). The two samples separately 

obtained from MFDFA technique, the dissimilarity betw

(q) and q have been represented in the same stature for 

comparison. The figure clearly represents that the cross

correlated signal also shows multifractal behavior just like the 

individual signals.  

Figure-4: The dissimilarity of λ (q) and h (q) 

Rn concentration and temperature. 

 

 

Figure-6: 

Sciences ___________________________________________________

Association 

           (14) 

correlation and cross-

Due to the superimposing of uneven and 

drifts on the composed data, usually straight calculation of these 

exponents are not proposed; rather the Detrended Fluctuation 

Analysis method is the authentic method to compute auto-

= 2)
49

. The relation 

and scaling exponent 

= 1for non-correlated 

1 for a strongly correlated data. Thus, the data is 

and γx. 

With q, for the two particular samples Rn concentration and 

describes the dissimilarity of cross 

 (q). The two samples separately 

obtained from MFDFA technique, the dissimilarity between h 

(q) and q have been represented in the same stature for 

comparison. The figure clearly represents that the cross-

correlated signal also shows multifractal behavior just like the 

 
 (q) and h (q) for two time series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-5: Sample Rn and temperature’s Multifractal cross

correlated Spectrum. 

 

The multifractal spectrum of the cross correlated sample of Rn

and temperature time series have been plotted in 

particular figure represents the amount of multifractality present 

in the cross-correlated sample even. In this paper, though we are 

primarily concerned with how the values of 

different local climatic parameter and soil radon fluctuation, the 

amount of multifractality present in these cross

signals will be dealt with in a forthcoming study. In the Results 

and Discussion section, we will elaborate on how the

cross-correlation, γx varies for different time series combinations 

and what impact it has on the climatic outcomes that we see in 

the Universe. 

 

Results and discussion 

The following figures show the time series of Rn concentration, 

temperature, humidity and rainfall for the last 10 years.
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Sample Rn and temperature’s Multifractal cross-

The multifractal spectrum of the cross correlated sample of Rn 

and temperature time series have been plotted in Figure-5. This 

particular figure represents the amount of multifractality present 

correlated sample even. In this paper, though we are 

primarily concerned with how the values of γx change for 

different local climatic parameter and soil radon fluctuation, the 

amount of multifractality present in these cross-correlated 

signals will be dealt with in a forthcoming study. In the Results 

and Discussion section, we will elaborate on how the degree of 

varies for different time series combinations 

and what impact it has on the climatic outcomes that we see in 

The following figures show the time series of Rn concentration, 

humidity and rainfall for the last 10 years. 
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Figure-7: Temperature concentration time series for the last ten years.

Figure-8: Humidity concentration time series for the last ten years.

Figure 9: Rainfall concentration time series for the last ten years.
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Temperature concentration time series for the last ten years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Humidity concentration time series for the last ten years. 
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From the time series analysis of Rn count, temperature 

variation, humidity and rainfall concentration, we have 

evaluated the Hurst exponent, multifractal width and 

autocorrelation exponent corresponding to each of the time 

series. The long range temporal correlations present in the time 

series has been reflected by the Hurst exponent, while the 

complicated values related to the time series are given by the 

multifractal spectral width. A measure of the self-correlation in 

the time series is nothing but the autocorrelation exponent.  

Table-1 gives the measures of Hurst Exponent, autocorrelation 

and multifractal width of the different time series.  

 

Table-1: The variation of auto-correlation, DFA exponent and 

Multifractal spectral width within 2005-2014. 

 

Rn 

Count 
Temperature Humidity Rainfall 

Hurst 

Exponent 
1.095 1.266 0.917 0.996 

Auto 

correlation 
0.668 0.545 0.463 0.386 

Multifracta

l Width 
0.715 0.913 0.589 0.653 

 

From Table-1, we have plotted the corresponding bar graphs 

which depict the variation of different measurement parameters. 

The SD values have been shown in the form of error bars 

corresponding to each of the parameter which essentially 

denotes the computational error corresponding to each of the 

measurements. Figure-10 represents the variation of specific 

parameters. 

 

This investigation of Rn time series function for 10 years and 

local climate parameters with nonlinear rigorous approach 

reveals: i. All the time series used herein, i.e. Rn, temperature, 

humidity, rainfall are multifractal in nature with different 

multifractal widths i.e. of varying complexity, ii. Also, all the 

time series are auto-correlated with different values, iii. Both the 

Hurst Exponent and multifractal spectral width show values on 

the higher side for temperature variation and rainfall. 

 

Next, by using the MFDXA technique, the cross-correlation 

coefficient has been assessed, corresponding to each pair of 

local climatic parameters. The degree of correlation subsists 

between the two climatic parameters has been measured by the 

cross-correlation coefficient γx and may thus be considered as a 

very important measure of how the change in one parameter 

affects the other. This may be considered very crucial while 

developing an automated earthquake surveillance system. The 

MFDXA technique goes into such depths of the complex geo-

physical time series, just like a mathematical microscope which 

is not possible by any other methods. Table-2 represents the 

cross-correlation coefficients corresponding to different pairs of 

climatic parameters as measured in our experiment. 

 

Table-2: Multifractal Detrended Cross Correlation of Radon 

concentration with Temperature, Humidity, Rain fall within 

2005-2014. 

 
Cross-correlation Coefficient (γx) 

Rn Count vs Temperature -0.692 

Temperature vs Humidity 0.163 

Rn Count vs Humidity -0.327 

Rn Count vs Rainfall -0.018 

Temperature vs Rainfall 0.278 

Humidity vs Rainfall 0.115 

 

Figure-11 illustrates the findings of Table-2, where the error 

bars correspond to standard computational errors in each of the 

measurement. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-10: Graph showing the scaling parameters for Rn, temperature, rainfall and humidity. 
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Figure-11: Degree of correlation among different climatic parameters and Rn time series. 

 

As pointed out earlier, as the value of cross-correlation 

coefficient decreases, the degree of correlation between the two 

time series signals increases. It can be seen from Figure-11 that 

soil Rn emission is strongly correlated with local climate 

parameters including temperature, rainfall and humidity. 

Maximum cross-correlation occurs between Rn emission and 

temperature as values of cross-correlation coefficient is 

minimum in this case.  
 

Conclusion 

Since local climate parameters play a significant role in 

emission of soil radon, before use of this time series for 

earthquake surveillance, this observation should be taken care of 

judicially. As discussed earlier, Radon fluctuation happens to be 

most sensitive and useful parameter for seismic surveillance. 

Many time series of Rn has been used for identifying 

earthquakes. This study with rigorous methods should be taken 

care of as a caution before confident identification of occurrence 

of earthquakes. 
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