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Abstract 

LULC classification were performed using Rotational Principal component approach on multispectral Landsat8 OLI datasets 

to increase the spectral divergence among the classes, which result better classification accuracy. We adopted Quartimax 

Rotational criteria to perform rotation using PC layers, which were obtained by performing PCA transformation using 

multispectral bands. We observed that, Quartimax rotational criteria improved the level of 

enhancing the spectral characteristics of the different spectral land cover 

than an ordinary PCA transformation approach over the same multispectral dataset.
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Introduction 

Accurate extraction of land cover features for land use and land 

cover classification in a complex landscape environments is 

always a big issue and a major challenge from the past and to

solve this issue many researchers adopted different spectral 

enhancement algorithms like Principal component analysis 

(PCA)
1-4

, Canonical discriminant analysis (CDA)

index factor (OIF)
6
, Brightness value overlapping index 

(BVOI)
7
, Linear discriminant analysis (LDA)

component analysis (CCA)
10

, Minimum noise fraction 

(MNF)
11,12

, Independent component analysis (ICA)

Principal component analysis is a lower order multivariate 

statistical dimensionality reduction algorithm widely ac

and used in remote sensing digital image processing as a 

spectral enhancement algorithm to process multispectral and 

hyper spectral dataset during LULC classification and change 

detection analysis for accurate mapping and extraction of 

different spectral land cover features
1,16,17

. Rotational Principal 

component analysis is a multivariate statistical approach

perform rotation using an ordinary principal component layers 

to obtained more better spectral situation, that can’t obtained 

from ordinary PC layers
18-23

. It is a procedure in which the 

eigenvectors (factors) are rotated in an attempt to achieve simple 

structure
2,19

. Explain through rotation of the factor or PC vectors 

we obtain simple and interpretable factors. Figure

hierarchy chain of different rotational approaches widely 

accepted and used in different statistical analysis.

 

Quartimax Rotational criteria is an orthogonal rotational criteria 

like Varimax criteria
3
, which re-orients and redistributes the 

spectral features from PC vectors space into newly generated 

orthogonal coordinate vector space. It maximize the difference 

of square factor loading for each variable across the factors,
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LULC classification were performed using Rotational Principal component approach on multispectral Landsat8 OLI datasets 

to increase the spectral divergence among the classes, which result better classification accuracy. We adopted Quartimax 

perform rotation using PC layers, which were obtained by performing PCA transformation using 

multispectral bands. We observed that, Quartimax rotational criteria improved the level of 

s of the different spectral land cover class and satisfied higher classification accuracy 

than an ordinary PCA transformation approach over the same multispectral dataset. 
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Accurate extraction of land cover features for land use and land 

cover classification in a complex landscape environments is 

always a big issue and a major challenge from the past and to 

solve this issue many researchers adopted different spectral 

enhancement algorithms like Principal component analysis 

, Canonical discriminant analysis (CDA)
5
, Optimum 

Brightness value overlapping index 

inant analysis (LDA)
8,9

, Canonical 

Minimum noise fraction 

, Independent component analysis (ICA)
13-15

. 

Principal component analysis is a lower order multivariate 

statistical dimensionality reduction algorithm widely accepted 

and used in remote sensing digital image processing as a 

spectral enhancement algorithm to process multispectral and 

dataset during LULC classification and change 

detection analysis for accurate mapping and extraction of 

Rotational Principal 

component analysis is a multivariate statistical approach to 

perform rotation using an ordinary principal component layers 

to obtained more better spectral situation, that can’t obtained 

It is a procedure in which the 

eigenvectors (factors) are rotated in an attempt to achieve simple 

through rotation of the factor or PC vectors 

we obtain simple and interpretable factors. Figure-1 shows the 

chain of different rotational approaches widely 

accepted and used in different statistical analysis. 

Quartimax Rotational criteria is an orthogonal rotational criteria 

orients and redistributes the 

C vectors space into newly generated 

orthogonal coordinate vector space. It maximize the difference 

of square factor loading for each variable across the factors, in 

other word we say that, it maximize the difference of the square 

factor loading in each variables across each factors or 

components
18,1

. 

 

Figure-

Hierarcy of Rotational Criteria

 

Mathematically: 
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Where: bij are the new loadings. Equation

“variance” of the squared factor loadings, which in turn 
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Quartimax Rotational Principal Component Analysis for Land Use and Land 

LULC classification were performed using Rotational Principal component approach on multispectral Landsat8 OLI datasets 

to increase the spectral divergence among the classes, which result better classification accuracy. We adopted Quartimax 

perform rotation using PC layers, which were obtained by performing PCA transformation using 

multispectral bands. We observed that, Quartimax rotational criteria improved the level of classification accuracy by 

satisfied higher classification accuracy 

; Factor loading Matrix.. 

other word we say that, it maximize the difference of the square 

riables across each factors or 
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represent contribution to variance of the variables and maximize 

the Equation-2
18

. 

Q � ∑ Q�
∗�

���       

 

Equation (2) represents the sum of variances of the rotated 

loadings. Since the Quartimax criterion attempts to maximize 

variance across the components. 

 

The objective of this research is to perform Quartimax rotation 

after performing principal component analysis using 

multispectral band and then we analytically compared 

performing LULC classification with PCA on the basis of their 

classification statistics like producer’s accuracy, user’s 

accuracy, Kappa statistic and overall accuracy. All the rotational 

process were performed using Microsoft Excel sheet 10 and 

ERDAS IMAGINE 9.2. 

 

Study Area: The extent of my study area is vary from 23° 45’ 

to 23° 15’ N latitude and 85° 0’ to 85° 30’ E longitude with an 

elevation of 2140 ft. from MSL and located in the Ranchi city, 
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represent contribution to variance of the variables and maximize 

             (2) 

Equation (2) represents the sum of variances of the rotated 

. Since the Quartimax criterion attempts to maximize 

The objective of this research is to perform Quartimax rotation 

after performing principal component analysis using 

multispectral band and then we analytically compared by 

performing LULC classification with PCA on the basis of their 

classification statistics like producer’s accuracy, user’s 

accuracy, Kappa statistic and overall accuracy. All the rotational 

process were performed using Microsoft Excel sheet 10 and 

The extent of my study area is vary from 23° 45’ 

to 23° 15’ N latitude and 85° 0’ to 85° 30’ E longitude with an 

elevation of 2140 ft. from MSL and located in the Ranchi city, 

which is the capital of the state of Jharkhand, India 

the Chhotanagpur Pleatu as shown in Figure

rainfall of the district is 1,375 mm, with more than 80% of 

precipitation received during the monsoon months. LANDSAT 

8 Operational Land Imager (OLI) dataset from 4 April 2014, 

were used as shown in Figure-2. The data was Level 1 T

corrected and geometrically corrected with root mean square 

(RMS) error less than 0.5 pixels. 

 

Methodology 

Our Research investigation were divided into three different 

steps: Estimation of PCs layers or vectors by performing PCA 

transformation using Landsat 8 OLI multispectral bands which 

includes Band 2, 3, 4, 5, 6 and 7 through following procedure as 

shown in Figure-3 : i. Layer stacking of multispectral optical 

bands 2, 3, 4, 5, 6 and 7. ii. Estimation of variance or covariance 

matrix. iii. Estimation of Eigen values and Eigenvector matrix. 

iv. Linear combination of multispectral bands with coefficient of 

Eigenvector matrix. v. Generation of PC layers or vectors.

Figure-2 

Map location of study area 

Figure-3 

Flow process of PCA algorithm 
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which is the capital of the state of Jharkhand, India and lies in 

the Chhotanagpur Pleatu as shown in Figure-2. Average annual 

rainfall of the district is 1,375 mm, with more than 80% of 

precipitation received during the monsoon months. LANDSAT 

8 Operational Land Imager (OLI) dataset from 4 April 2014, 

2. The data was Level 1 T-Terrain 

corrected and geometrically corrected with root mean square 

Our Research investigation were divided into three different 

or vectors by performing PCA 

transformation using Landsat 8 OLI multispectral bands which 

7 through following procedure as 

3 : i. Layer stacking of multispectral optical 

tion of variance or covariance 

values and Eigenvector matrix. 

iv. Linear combination of multispectral bands with coefficient of 

Eigenvector matrix. v. Generation of PC layers or vectors. 

 

 

PC layers
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From the above analysis, PC vectors or layers were generated as 

shown in Figure-7(a). After the generation of PC layers, we 

started the rotation process using Quartimax Rotational criteria 

over PC s layer in an iterative fashion using Excel sheet. The 

whole rotational operational were divided into two stages. In the 

first stage, rotation of factor loading matrix were performed in 

an iterative fashion using Excel sheet using the following steps 

and equations as shown from Equation 3-9 in order to generate 

rotated factor loading matrix and converted into rotated 

eigenvector matrix. In the second stage, Quartimax Rotated PC 

layers were obtained by performing the linear combination of 

PC vectors with rotated Eigenvector matrix using Erdas Imagine 

Modeler as shown in Figure-5. Figure-4 shows the flow process 

used during the rotation period. Quartimax rotation is different 

from Varimax rotation due to the fact that Quartimax rotation 

are obtained by performing the rotation of pair of bands across 

the factors or components in an iterative fashion as long as 

convergence are not achieved to maximize the variance of the 

square factor loading for each bands across the factors or 

components. 

 

i. Estimation of Factor loading matrix from eigenvector matrix. 

ii. Normalization of Factor loading matrix were obtained by 

dividing each coefficient of the factor loading matrix by the 

square root of the sum of the squares of each elements of that 

row. iii. Transpose of the Factor loading matrix. iv. Estimation 

of variables U and V using the algorithm as shown in Equation 

(3) and (4), where U is the difference of square of the elements 

of the pair of columns from variables or bands taken from the 

factor loading matrix for rotation across the factors or 

component in the Excel sheet; and V is the product of the 

elements of the of the pair of columns from the FLM across the 

factors or components multiplied with 2:  

 

	U������ � C��
� � C����

� 	                (3) 

 

	V������ � 2 ∗ C�� ∗ C�,���                  (4) 

 

Where: i= 1, 2, 3….m; where mis the number of factors or 

components; j and j+1 are any arbitrary pair of columns or 

bands, that were taken from the eigenvector matrix for rotation 

in an iterative fashion across the factors or components, such 

that j=1, 2, 3…….n; and C represents the column of the pair of 

bands from FLM matrix for rotation. 

Estimation of dependent variables A, B, C and D for each pair of 

bands or variables, during rotation across the factors or 

components using variables U and Vas shown in Equations (4)-

(8):  

 

A	U
 � ∑ U��������
 
��� � ∑ C!"

� � C!���
� 

���              (5) 

B	V
 � ∑ V��������
 
��� � ∑ 2 ∗ C�� ∗ 	C����

 
���                (6) 

C	UV
 � ∑	U������
� �	V������

� 
                (7) 

D	UV
 � ∑	U������ ∗ V������
                (8) 

 

Estimation of rotation angle (θ) across the bands or variables 

using the following Equation-9: 

 

θ �
�

%
∗ tan)�

�(*+),-)

(�+),��-�)
                 (9) 

 

Where: k is the total number of row in the FLM 

Performed rotation of each pair of bands across the factors using 

Equation-3 to 9 in an iterative fashion as long as the 

convergence were not achieved. Transpose of matrix obtained 

from the above steps. Denormalization of rotated FLM. 

Generation of rotated Eigenvector Matrix from rotated Factor 

Loading Matrix. 

 

Generation of Quartimax Rotated PC layers by obtained by the 

linear combination of rotated Eigenvector Matrix with PC 

vectors` as shown in Figure-5. 

 

In this stage, image classification were performed over spectral 

enhanced Quartimax Rotated PC layers obtained from the above 

stages using supervised classification with Maximum like hood 

classifier algorithm. Classification of spectral data transformed 

the continuous multiband raster into categorical or thematic 

map. Figure-6(a) and (b) shows different steps and procedure 

taken during LULC classification scheme. Based on LULC 

classification, seven classes were generated, which are standing 

water bodies (SW), open (OF) and dense (DF) forest and 

vegetation, open (OB) and dense (DB) built-up land, agriculture 

(AG), and rocky/barren land (R/B) as shown in Figure-7. 

Smoothing of thematic map were performed using majority 

filter in order to eliminate the hazy appearance in the thematic 

map after classification, which arises due to inherent spectral 

variability within the same class during classification
24, 25

. 
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Flow Process of Quartimax Rotational PCA 
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Generation of Quartimax Rotated PC layers

 

Results and Discussion 

Figure-7(a) and (b) represents the FCC images of 

component layers and Quartimax Rotation Principal Component 

layers and Figure-(c) and (d) shows the classified maps 

generated by performing LULC classification using PC layers 

and Quartimax Rotational PC layers. Table (1) represents 

Eigenvector matrix obtained during PC transformation while 

Table (2) shows Factor Loading Matrix (or FLM) obtained from 

eigenvector matrix after PC transformation. FLM measures the 

Pearson correlation coefficient between PCs and bands, which 

means it measure the loading effect of each variables or bands 

over each components. Table (3) and (4) represents Quartimax 

Rotated Factor Loading matrix obtained after the execution of 

rotation process in an excel sheet and Quartimax Rotated 

Eigenvector matrix estimated from FLM. 

 

Table (5) represents accuracy assessments statistics of 

Quartimax Rotational PCA along with PCA algorithm in order 

to made comparison analytically. From the accuracy assessment 

statistics as shown in Table (5) for the seven different LULC 

classes, we observed that Quartimax rotational PCA was found 
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Figure-5 

Generation of Quartimax Rotated PC layers 
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Figure-6(a) and (b) 

Flow Process of LULC Classification 

 

7(a) and (b) represents the FCC images of Principal 

component layers and Quartimax Rotation Principal Component 

(c) and (d) shows the classified maps 

generated by performing LULC classification using PC layers 

and Quartimax Rotational PC layers. Table (1) represents 

atrix obtained during PC transformation while 

Table (2) shows Factor Loading Matrix (or FLM) obtained from 

eigenvector matrix after PC transformation. FLM measures the 

Pearson correlation coefficient between PCs and bands, which 

g effect of each variables or bands 

over each components. Table (3) and (4) represents Quartimax 

obtained after the execution of 

rotation process in an excel sheet and Quartimax Rotated 

Table (5) represents accuracy assessments statistics of 

Quartimax Rotational PCA along with PCA algorithm in order 

to made comparison analytically. From the accuracy assessment 

statistics as shown in Table (5) for the seven different LULC 

ved that Quartimax rotational PCA was found 

to have higher or better PA statistics as compared with ordinary 

PCA for classes of DF, OF, OB and DB. OF had PA of 75% for 

Quartimax rotational PCA, but only 67% for PCA, which 

indicates that the rotation after the PC layer generation improved 

the spectral information as compared with the ordinary PC 

layers. Similarly, DF, OB and DB exhibited PAs of 73, 68 and 

95% respectively for Quartimax PCA as compared to 64, 40 and 

88% respectively for PCA. PCA exhibited poo

over Quartimax Rotation PCA. The PAs for both methods are 

almost similar for AG class of value 96% for PCA and 95% for 

Quartimax Rotational PCA. Which indicates that the rotation did 

not improve the spectral characteristics of these LULC 

such an extent that makes a significant difference between both 

methods. In the case of R/B and SW, PA for PCA (61% and 

100%) is higher than Quartimax rotational PCA (48% and 94%), 

which indicates that the rotation after the PC transformation 

reduced the spectral characteristics of this land cover class.

Similarly, from UA statistics of different LULC classes of 

Table-5, we observed that Quartimax Rotational criteria using 

PC layers improved the UA statistics from 74 to 80% for DF, 73 

to 83% for AG, 80 to 91% for OB. However, for R/B and OF, 

PCA provided better accuracy of 95% and 92% as compared to 
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Quartimax rotational PCA, but only 67% for PCA, which 

the PC layer generation improved 

the spectral information as compared with the ordinary PC 

layers. Similarly, DF, OB and DB exhibited PAs of 73, 68 and 
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70% and 87% for Quartimax rotational PCA. For SW, both 

algorithm exhibited same UA of 100%. Varimax rotational PCA 

exhibited better KS and OA of 82 and 76% respectively as 

compared to 79 and 74% respectively for PCA. For DB class 

both algorithm exhibited almost same level of accuracy. This 

indicates that the misclassification of pixels were reduced for 

Varimax rotational PCA as compared with PCA. Quartimax 

rotational PCA exhibited better Kappa statistics of 84% and 

overall accuracy of 79% in compare with PCA algorithm of 

value and OA of 81 and 72% respectively as compared to 79 

and 74% respectively for PCA. From the above statistics, we 

also observed that, Quartimax Rotational criteria reduce the 

number of pixels undergoes misclassification by reducing the 

chance of error of omission and commission pixels and thus 

improved the level of an accuracy in classification. 

 

 
 

 
Figure-7 

(a) FCC of PC layers; (b) FCC of Quartimax Rotational PC layers; (c) Thematic Map generated using PC layers and (d) 

Thematic Map generated using Quartimax Rotated PC layers 
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Table-1 

Eigenvector Matrix before Rotation 

 F2 F3 F4 F5 F6 F7 

BAND2 0.06695 -0.1897 -0.3538 0.48064 0.57641 0.52068 

BAND3 0.13909 -0.1168 -0.5137 0.21051 0.17126 -0.7934 

BAND4 0.25744 -0.2075 -0.5883 -0.062 -0.6737 0.29468 

BAND5 0.3457 0.87658 -0.2544 -0.1463 0.13575 0.08677 

BAND6 0.66743 -0.0026 0.44231 0.55676 -0.2108 -0.0668 

BAND7 0.58731 -0.3728 0.06696 -0.624 0.34875 0.02419 

 

Table-2 

Factor Loading Matrix (FLM) before Rotation 

 F2 F3 F4 F5 F6 F7 

BAND2 0.556117 -0.55248 -0.46546 0.325004 0.235373 0.088461 

BAND3 0.82724 -0.2436 -0.48387 0.10192 0.05007 -0.09651 

BAND4 0.638019 -0.1803 -0.23091 -0.01251 -0.08208 0.014934 

BAND5 0.744131 0.661663 -0.08674 -0.02564 0.01436 0.00918 

BAND6 0.99216 -0.00138 0.10413 0.06737 -0.01541 -0.00203 

BAND7 0.687383 -0.15298 0.01241 -0.05945 0.020067 0.00058 

 

Table-3 

Quartimax Rotated FLM 

 F2
R
 F3

R
 F4

R
 F5

R
 F6

R
 F7

R
 

F2 0.794004 -0.48473 -0.41864 0.342394 0.226771 0.058749 

F3 0.736497 -0.1771 -0.32409 0.030018 -0.01108 -0.11507 

F4 0.745632 -0.34785 -0.29067 0.052984 -0.04481 0.025652 

F5 0.780242 0.471439 -0.27787 0.006669 0.04748 0.004684 

F6 0.776045 0.452434 0.295607 -0.07035 -0.09566 -0.01133 

F7 0.729787 -0.24214 0.015275 -0.02366 0.0385 0.010861 
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Table-4 

Quartimax Rotated Eigenvector Matrix 

 F2
R
 F3

R
 F4

R
 F5

R
 F6

R
 F7

R
 

F2
 

0.095584 -0.16641 -0.31822 0.506357 0.555345 0.345799 

F3
 

0.123832 -0.08491 -0.34407 0.062003 -0.03789 -0.94599 

F4 0.212741 -0.28302 -0.52365 0.185711 -0.26006 0.198641 

F5
 

0.362465 0.624552 -0.81508 0.038057 0.448707 0.106391 

F6
 

0.522047 0.867929 0.99687 -0.96275 -0.13926 -0.3727 

F7
 

0.440904 -0.41717 0.058272 -0.17559 0.526866 0.320835 

 

Table-5 

Accuracy assessment table for the two different image classification methods using the seven LULC classes 

LULC 

Method 1 Method 2 

PCA Quartimax Rotated PCA 

PA% UA% PA% UA% 

SW 100 100 94 100 

OF 67 92 75 87 

DF 64 74 73 80 

AG 96 73 95 83 

R/B 61 95 48 70 

OB 40 80 68 91 

DB 88 82 95 80 

KS (%) 81 84 

OA (%) 72 79 

[SW: standing water bodies, OF: open forest and vegetation, DF: dense forest and vegetation, AG: agriculture, R/B: Rocky/Barren, 

OB: Open built-up, DB: Dense built-up, PA: Producer’s accuracy, UA: User’s accuracy, KS: Kappa statistics, OA: Overall 

accuracy]
24, 25

. 

 

Conclusion 

In conclusion, this paper provided a statistical significance of 

Quartimax Rotational PCA for LULC classification using 

multispectral dataset and then analytically compare its strength 

in term of classification statistics with an ordinary PCA 

algorithm. From the accuracy statistics for the LULC classes, we 

observed that the rotation of PC layers using the Quartimax 

Rotational criterion improved the level of overall accuracy of 

the classification from 72% to 79% as compared with PCA 

algorithm and also for most of the classes. This indicates that the 

rotation and redistribution of vector improves the spectral 

information of the bands and thus, reduces the chances of 

misclassification of pixels as compared with PCA. In 

conclusion, Quartimax rotational PCA exhibited better and 

much more dynamic capability to recognise the different LULC 

classes with higher accuracy rate as compared with PCA. For 

our future research, Quartimax rotational PCA will be used to 

extract several hidden features from complex spectral situation 

and environments. 
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