International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Integrating remote sensing and GIS for quantitative analysis of Nag River Basin, Maharashtra, India

Author Affiliations

  • 1Indian Institute of Geomagnetism, Navi Mumbai 410218, India
  • 2Indian Institute of Geomagnetism, Navi Mumbai 410218, India
  • 3School of Earth Sciences, SRTM University, Nanded- 431606, Maharashtra, India
  • 4Dr. KSK Geomagnetic Research Laboratory, IIG, Prayagraj 221505, India

Int. Res. J. Earth Sci., Volume 12, Issue (1), Pages 1-10, February,25 (2024)

Abstract

Morphometric analysis of the extinguishing Nag River Basin, Maharashtra, India, will be a boon for the basin's conservation and sustainable development. Employing SRTM data and GIS tools, this analysis has proven to be a proficient method for extracting the river basin and determining its morphometric parameters, including drainage network, basin geometry analysis, texture and relief analysis etc. The Strahler method has been adapted for stream ordering in Arc GIS 10.3. The resulting extraction processes have unveiled that the river basin is dendritic to sub-dendritic type branching in east-west direction. The Nag River Basin stretch is about 810 square kilometres. Relief analysis has shown that the slopes within the Nag River Basin range from 1.2 to 23 degrees, and these changes in elevation are significantly impacted by the geological and geomorphological features present within the area. Moreover, the basin's mean stream length ratio is 0.55 km, indicating elongated shape with gentle slopes. From this study, it is understood that the development of the Nag River watershed and its streams is governed by the subsurface lithology present there.

References

  1. Naik, P. K., & Awasthi, A. K. (2003)., Groundwater resources assessment of the Koyna River basin, India., Hydrogeology Journal, 11, 582-594.
  2. Vijesh, V.K. (2013)., Groundwater information, Jalgaon district, Maharashtra., Central Ground Water Board. Technical Report. 1788/DBR/2013.
  3. Prabu, P., & Baskaran, R. (2013)., Drainage morphometry of upper Vaigai river sub-basin, Western Ghats, South India using remote sensing and GIS., Journal of the Geological Society of India, 82, 519-528.
  4. Reddy, P. R., Kumar, K. V., & Seshadri, K. (1996)., Use of IRS-1C data in groundwater studies., Current Science, 600-605.
  5. Rajasekhar, M., Raju, G. S., & Raju, R. S. (2020)., Morphometric analysis of the Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies., Groundwater for Sustainable Development, 11, 100434.
  6. Prakasam, C. (2010)., Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil nadu., International journal of Geomatics and Geosciences, 1(2), 150.
  7. Gupta, R. P. (2017)., Remote sensing geology., Springer.
  8. Yadav, S. K., Dubey, A., Singh, S. K., & Yadav, D. (2020)., Spatial regionalisation of morphometric characteristics of mini watershed of Northern Foreland of Peninsular India., Arabian Journal of Geosciences, 13, 1-16.
  9. Sharaddeep and Gupta, D.C. (2021)., Study of morphotectonics in relation to Neotectonic Activity in parts of Tapi River Valley: A review., Int. J. Geography, Geol. Environ., 3(2), 117-120.
  10. Krishnamurthy, J., & Srinivas, G. (1995)., Role of geological and geomorphological factors in ground water exploration: a study using IRS LISS data., International Journal of Remote Sensing, 16(14), 2595-2618.
  11. Ranade, P., & Katpatal, Y. B. (2008)., Effects of Urbanization on River Morphometry: A Case Study For Nag River Urban Watershed Using Geomatics Approach., Journal on Geoinformatics, Nepal, 8-11.
  12. Sreedevi, P. D., Owais, S. H. H. K., Khan, H. H., & Ahmed, S. (2009)., Morphometric analysis of a watershed of South India using SRTM data and GIS., Journal of the geological society of India, 73, 543-552.
  13. Umrikar, B. N. (2017)., Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India., Applied Water Science, 7, 2231-2243.
  14. Shailaja, G., Umrikar, B. N., Kadam, A. K., & Gupta, G. (2022)., Morphometric characterization of sub-basins in a hard-rock aquifer system of Maharashtra, India, using geospatial and geostatistical tools., Applied Geomatics, 14(1), 65-78.
  15. Pande, C. B., & Moharir, K. (2017)., GIS based quantitative morphometric analysis and its consequences: a case study from Shanur River Basin, Maharashtra India., Applied Water Science, 7(2), 861-871.
  16. Ansari, K., and Khandeshwar, S.R. (2014)., Groundwater analysis in the vicinity of Nag River., Int. J. Res. Engg. Tech., 3(11), 259-263
  17. Sonar, M. A., Sirsat, S. K., Kadam, V. B., & Golekar, R. B. (2021)., Morphometric, Hypsometric and Hydrogeomorphic Investigation in the Region of Painganga River Basin in Buldhana District, Maharashtra, India, Using Remote Sensing & GIS Techniques., Journal of Geomatics, 15(2), 174-188.
  18. Manzar, A. (2013)., Ground water information Nagpur district Maharashtra.,
  19. Rahangdale, K., Khaire, J., Bhoyar, V., Patil, H., Thakre, G., Bawne, Y., Parashar, G. and Kamble, S. (2022)., Pollution Study of nearby River (Nag River)., Int. J. Res. Appl. Sci. Engg. Tech., 10(3), 1148-1150.
  20. Rai, P.K., Mohan, K., Mishra, S., Ahmad, A. and Mishra, V.N. (2014)., A GIS-based approach in drainage morphometric analysis of Kanhan River Basin, India., Appl. Water Science, 4(4), https://doi.org/10.1007/s13201-014-0238-y.
  21. Horton, R. E. (1945)., Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology., Geological society of America bulletin, 56(3), 275-370.
  22. Strahler, A. N. (1952)., Dynamic basis of geomorphology., Geological society of america bulletin, 63(9), 923-938.
  23. Strahler, A. N. (1964)., Quantitative geomorphology of drainage basin and channel networks., Handbook of applied hydrology.
  24. Mueller, J. E. (1968)., An introduction to the hydraulic and topographic sinuosity indexes., Annals of the association of american geographers, 58(2), 371-385.
  25. Chorley, R. J. (2019)., The drainage basin as the fundamental geomorphic unit., In Introduction to physical hydrology, 37-59. Routledge.
  26. Horton, R. E. (1932)., Drainage-basin characteristics., Transactions, American geophysical union, 13(1), 350-361.
  27. Rai, P. K., Mishra, V. N., & Singh, P. (Eds.). (2022)., Geospatial technology for landscape and environmental management: sustainable assessment and planning., Singapore: Springer.
  28. Kumar, A., Singh, S., Pramanik, M., Chaudhary, S., & Negi, M. S. (2022)., Soil erodibility mapping using watershed prioritization and morphometric parameters in conjunction with WSA, SPR and AHP-TOPSIS models in Mandakini basin, India., International Journal of River Basin Management, 1-23.
  29. Singh, A. P., Arya, A. K., & Singh, D. S. (2020)., Morphometric analysis of Ghaghara River Basin, India, using SRTM data and GIS., Journal of the Geological Society of India, 95, 169-178.
  30. Rai, P. K., Chandel, R. S., Mishra, V. N., & Singh, P. (2018)., Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data., Applied water science, 8, 1-16.
  31. Rama, V. A. (2014)., Drainage basin analysis for characterization of 3rd order watersheds using Geographic Information System (GIS) and ASTER data., Journal of Geomatics, 8(2), 200-210.
  32. Dekaa, B., Bharteeyb, P. K., Duttab, M., Patgirib, D. K., & Saikiab, R. (2021)., Morphometric analysis of Moridhal watershed in Dhemaji District of Assam, India using remote sensing and Geographic Information System techniques., Desalination and Water Treatment, 242, 235-242.
  33. Schumm, S. A. (1956)., Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey., Geological society of America bulletin, 67(5), 597-646.
  34. Hack, J.T. (1957)., Studies of Longitudinal Stream-Profiles in Virginia and Maryland., U.S. Geol. Surv. Professional Paper - 294B, 45-97.
  35. Chorley, R. J. (1957)., Climate and morphometry., The Journal of Geology, 65(6), 628-638.
  36. Farhan, Y. (2017)., Morphometric assessment of Wadi Wala Watershed, Southern Jordan using ASTER (DEM) and GIS., Journal of Geographic Information System, 9(2), 158-190.
  37. Miller, V. C. (1953)., A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee., Vol. 3. New York: Columbia University.
  38. Smith, K. G. (1950)., Standards for grading texture of erosional topography., American journal of Science, 248(9), 655-668.
  39. Nooka Ratnam, K., Srivastava, Y. K., Venkateswara Rao, V., Amminedu, E. K. S. R., & Murthy, K. S. R. (2005)., Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis—remote sensing and GIS perspective., Journal of the Indian society of remote sensing, 33, 25-38.
  40. M. A. (1957)., An analysis of the relations among elements of climate, surface properties, and geomorphology., Vol. 11. New York: Department of Geology, Columbia University.
  41. Smart, J. S., & Surkan, A. J. (1967)., The relation between mainstream length and area in drainage basins., Water resources research, 3(4), 963-974.
  42. Asfaw, D., & Workineh, G. (2019)., Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation., International Soil and Water Conservation Research, 7(2), 150-157.
  43. Faniran, A. (1968)., The index of drainage intensity: a provisional new drainage factor., Aust J Sci, 31(9), 326-330.
  44. Schumm, S. A. (1963)., Sinuosity of alluvial rivers on the Great Plains., Geological Society of America Bulletin, 74(9), 1089-1100.
  45. Sreedevi, P. D., Subrahmanyam, K., & Ahmed, S. (2005)., The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain., Environmental Geology, 47, 412-420.
  46. Patton, P. C., & Baker, V. R. (1976)., Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls., Water resources research, 12(5), 941-952.
  47. Melton, M. A. (1957)., An analysis of the relations among elements of climate, surface properties, and geomorphology Vol. 11., New York: Department of Geology, Columbia University.