

*Research Journal of Computer and Information Technology Sciences* \_\_\_\_\_ Vol. 5(5), 1-5, July (2017)

# Prediction model based on NLP and NN for financial data outcome revelation

Hiral R. Patel<sup>1\*</sup>, Satyen M. Parikh<sup>2</sup> and Ajay M. Patel<sup>3</sup> <sup>1</sup>DCS, Ganpat University, Ganpat Vidyanagar-384012, Gujarat, India <sup>2</sup>FCA, Ganpat University, GanpatVidyanagar - 384012, Gujarat, India <sup>3</sup>AMPICS, Ganpat University, Ganpat Vidyanagar - 384012, Gujarat, India hrp02@ganpatuniversity.ac.in

#### Available online at: www.isca.in

Received 30th April 2017, revised 16th July 2017, accepted 20th July 2017

#### Abstract

The financial market is too vigorous in nature. As per the growth of world, financial market became the most valuable investment component for the people. The common mentality for the investors is to maximise the capital amount in very short time so to maximise the profit is ultimately to decide the investment strategy for increase the ROI. This approach requires a lot of analytical work to meet the investment objective. It also requires the portfolio rebalancing or switching strategy to optimise the revenue. The proposed model based on predictive approach to recommend the future value of selective stock from given data and the model performs the analytical task based on financial news and technical financial data. For analysing the news impact proposed approach deal with TF-TDF text mining technique and semantic analysis of Natural Language Processing to predict the impact of news. It also used technical data and to forecast future value the historical data of stock is necessity. So the modified neural network based on back propagation methodology used as forecasting machine learning methodology in presented model to predict the future value.

Keywords: Back Propagation, Financial Data, Forecasting, Neural Network, NLP, ROI, Semantic Analysis.

#### Introduction

The financial market is too vigorous in nature. As per the growth of world, financial market became the most valuable investment component for the people. The common mentality for the investors is to maximise the capital amount in very short time so to maximise the profit is ultimately to decide the investment strategy for increase the ROI. This approach requires a lot of analytical work to meet the investment objective<sup>1</sup>. It also requires the portfolio rebalancing or switching strategy to optimise the revenue<sup>2</sup>.

The proposed model based on predictive approach to recommend the future value of selective stock from given data and the model performs the analytical task based on financial news and technical financial data<sup>3</sup>. For analysing the news impact proposed approach deal with TF-TDF text mining technique and semantic analysis of Natural Language Processing to predict the impact of news<sup>4</sup>. It also used technical data and to forecast future value the historical data of stock is necessity. So the modified neural network based on back propagation methodology used as forecasting machine learning methodology in presented model to predict the future value<sup>5</sup>.

### Methodology

**Data Collection:** The proposed model uses news data and financial data history. So the implemented approach have

created the agents to collect the data from various authenticate sources of news and financial data<sup>3</sup>.

**Data Pre-processing:** As per the learning methodology conventions, before applying the any technique, data should be statistically proved for implemented  $model^4$ .

**Analytical Study**: The analytical study approach focus on quantitative and qualitative study. For the qualitative analysis, to calculate the news impact TF-IDF with semantic analysis techniques is used.

For quantitative analysis, using news impact consideration modified neural network with back propagation method developed to forecast the future value. This methodology used for classification as well as predictive analytical study<sup>4</sup>.

**Result Data Selection**: The model is generalised approach to get the future product value. To justify the results the specific product selection is done for representing the work<sup>6</sup>.

Each sector has positive and negative affected stocks so to predict the value based on the news that may positive or negative impacted.

Here for outcome revelation, selected stock with different tools with techniques and proposed model performance compared in the terms of scalability, efficiency, throughput and accuracy<sup>7</sup>.



Figure-1: Proposed Model for Prediction of Stock.

# **Results and Discussion**

The financial market stocks are categorised using market capital value in different categories. i. Small CAP Stock- The market capital below 2 billion dollar stocks are under this category. So from BSE small cap stock list, given result discussion consider three variant stocks based on Oil sector are consider like Jindal Drilling and Inds. Ltd., and ONGC scripts<sup>8,9</sup>. ii. Mid CAP Stock- The market capital between 2 billion dollar to10 billion dollar stocks are under this category. So from BSE small cap stock list, given result discussion consider three variant stocks based on Oil sector are consider like GAIL, HPCL and Petronet LNG scripts<sup>8,10</sup>. iii. Large CAP Stock- The market capital above 10 billion dollar stocks are under this category. So from BSE small cap stock list, given result discussion consider three variant stocks based on Oil sector are consider like Aban Offshore Ltd., The Chennai Petroleum Corp., Indraprasth Gas, and Indian Oil scripts<sup>8</sup>.

**Outcome Revelation:** The neural network is specially used to work with non-linear and dynamic nature base data<sup>11-13</sup>. The developed model results also compared with existing tools like Aluda Neuro intelligence, XLMiner, Sipina Research, Tanagra and Weka which supporting neural network different

techniques. According to the outcomes given by the different tools, this model implement the Neural Network with back propagation method is implemented using C sharp language<sup>8,12</sup>. The Table-1 shows the performance of different tool and the implemented methodology.

## Conclusion

This experimental study performs comparative analytical study with developed approach. As per the study, techniques are playing effective role in different criteria. No doubt in past developed approach, regression was best out fitting model for predict the trend as per time series being effect, Statistical approach is best for linearity and continuous being effect and the machine learning based neural network performs best for most dynamism and non - linear based effect so the classification based modelling techniques are used as best forecaster to deal with random behaviour. Among mentioned classifier predictor, neural network used as best trainer for nonlinear data for short term prediction to maximum coverage of dynamism in fluctuation. So the above table shows the comparative results and concludes that modified implemented approach gives better result in terms of accuracy, scalability, efficiency and through put.

**Table-1:** Outcome Revelation of Proposed Model.

| Script Type | Script Name                       | Applied Tool | Method                  | Measure      | Through Put [MS] |
|-------------|-----------------------------------|--------------|-------------------------|--------------|------------------|
|             | Aban Offshore<br>Ltd.             | Aluda Neuro. | Gradient Descent        | R2=0.99      | 914              |
|             |                                   |              | Levenberg               | R2=1         | 902              |
|             |                                   |              | Back Propagation        | R2=0.87      | 1000             |
|             |                                   | XLMiner      | NN                      | Accuracy=69% | 141              |
|             |                                   | Sipina       | Single Layer Perceptron | 60%          | 550              |
|             |                                   |              | Multilayer Perceptron   | 61%          | 555              |
|             |                                   | Tanagra      | Multilayer Perceptron   | 68%          | 281              |
|             |                                   | Weka         | 10 Fold MLP             | 62%          | 110              |
|             |                                   |              | 20 Fold MLP             | 60%          | 150              |
|             |                                   | Proposed     | Back Propagation        | 78%          | 120              |
|             |                                   | Aluda Neuro. | Gradient Descent        | R2=0.99      | 843              |
|             |                                   |              | Levenberg               | R2=0.98      | 740              |
|             |                                   |              | Back Propagation        | R2=0.86      | 838              |
|             |                                   | XLMiner      | NN                      | Accuracy=70% | 135              |
| Small Can   | Jindal Drilling<br>and Inds. Ltd. | <u> </u>     | Single Layer Perceptron | 61%          | 660              |
| Sman Cap    |                                   | Sipina       | Multilayer Perceptron   | 63%          | 575              |
|             |                                   | Tanagra      | Multilayer Perceptron   | 68%          | 281              |
|             |                                   | Walza        | 10 Fold MLP             | 73%          | 110              |
|             |                                   | weкa         | 20 Fold MLP             | 70%          | 160              |
|             |                                   | Proposed     | Back Propagation        | 77%          | 105              |
|             | ONGC                              | Aluda Neuro. | Gradient Descent        | R2=0.99      | 905              |
|             |                                   |              | Levenberg               | R2=0.89      | 860              |
|             |                                   |              | Back Propagation        | R2=0.88      | 981              |
|             |                                   | XLMiner      | NN                      | Accuracy=70% | 195              |
|             |                                   | Sipina       | Single Layer Perceptron | 60%          | 560              |
|             |                                   |              | Multilayer Perceptron   | 63%          | 575              |
|             |                                   | Tanagra      | Multilayer Perceptron   | 69%          | 301              |
|             |                                   | Weka         | 10 Fold MLP             | 70%          | 490              |
|             |                                   |              | 20 Fold MLP             | 72%          | 510              |
|             |                                   | Proposed     | Back Propagation        | 77%          | 127              |
|             | Chennai<br>Petroleum<br>Corpn     | Aluda Neuro. | Gradient Descent        | R2=0.99      | 835              |
| Mid Cap     |                                   |              | Levenberg               | R2=1         | 678              |
|             |                                   |              | Back Propagation        | R2=0.76      | 761              |
|             |                                   | XLMiner      | NN                      | Accuracy=67% | 151              |
|             |                                   | Sipina       | Single Layer Perceptron | 61%          | 555              |
|             |                                   |              | Multilaver Percentron   | 63%          | 575              |
|             |                                   | Tanaara      | Multiloyor Dercentror   | 600          | 071              |
|             |                                   | i anagra     |                         | 09%          | 2/1              |
|             |                                   | Weka         |                         | 64%          | 124              |
|             |                                   |              | 20 Fold MLP             | 61%          | 159              |
|             |                                   | Proposed     | Back Propagation        | 80%          | 140              |

| Script Type | Script Name     | Applied Tool | Method                  | Measure      | Through Put [MS] |
|-------------|-----------------|--------------|-------------------------|--------------|------------------|
|             |                 | Aluda Neuro. | Gradient Descent        | R2=0.98      | 930              |
|             | Indraprasth Gas |              | Levenberg               | R2=1         | 899              |
|             |                 |              | Back Propagation        | R2=0.8       | 999              |
|             |                 | XLMiner      | NN                      | Accuracy=67% | 151              |
|             |                 | Sipina       | Single Layer Perceptron | 62%          | 540              |
|             |                 |              | Multilayer Perceptron   | 63%          | 565              |
|             |                 | Tanagra      | Multilayer Perceptron   | 69%          | 271              |
|             |                 | Weka         | 10 Fold MLP             | 70%          | 130              |
|             |                 |              | 20 Fold MLP             | 69%          | 150              |
|             |                 | Proposed     | Back Propagation        | 80%          | 140              |
|             |                 | Aluda Neuro. | Gradient Descent        | R2=0.99      | 501              |
|             |                 |              | Levenberg               | R2=1         | 501              |
|             |                 |              | Back Propagation        | R2=0.8       | 501              |
|             |                 | XLMiner      | NN                      | Accuracy=69% | 141              |
|             | Indian Oil      | Sipina       | Single Layer Perceptron | 60%          | 550              |
|             | Indian Oil      |              | Multilayer Perceptron   | 61%          | 555              |
|             |                 | Tanagra      | Multilayer Perceptron   | 68%          | 281              |
|             |                 | Walsa        | 10 Fold MLP             | 62%          | 110              |
|             |                 | Weka         | 20 Fold MLP             | 60%          | 150              |
|             |                 | Proposed     | Back Propagation        | 79%          | 140              |
|             |                 |              | Gradient Descent        | R2=0.98      | 761              |
|             |                 | Aluda Neuro. | Levenberg               | R2=1         | 871              |
|             |                 |              | Back Propagation        | R2=0.76      | 881              |
|             | GAIL            | XLMiner      | NN                      | Accuracy=68% | 144              |
|             |                 | Sipina       | Single Layer Perceptron | 61%          | 553              |
|             |                 |              | Multilayer Perceptron   | 65%          | 565              |
|             |                 | Tanagra      | Multilayer Perceptron   | 67%          | 291              |
|             |                 | Weka         | 10 Fold MLP             | 72%          | 111              |
| Large Cap   |                 |              | 20 Fold MLP             | 70%          | 121              |
|             |                 | Proposed     | Back Propagation        | 79%          | 142              |
|             | HPCL            | Aluda Neuro. | Gradient Descent        | R2=0.99      | 991              |
|             |                 |              | Levenberg               | R2=1         | 881              |
|             |                 |              | Back Propagation        | R2=0.78      | 777              |
|             |                 | XLMiner      | NN                      | Accuracy=68% | 144              |
|             |                 | Sipina       | Single Layer Perceptron | 62%          | 530              |
|             |                 |              | Multilayer Perceptron   | 66%          | 565              |
|             |                 | Tanagra      | Multilayer Perceptron   | 69%          | 284              |
|             |                 | Weka         | 10 Fold MLP             | 63%          | 120              |
|             |                 |              | 20 Fold MLP             | 61%          | 140              |
|             |                 | Proposed     | Back Propagation        | 80%          | 135              |
|             | Petronet LNG    | Aluda Neuro. | Gradient Descent        | R2=0.99      | 888              |

| Script Type | Script Name | Applied Tool | Method                  | Measure      | Through Put [MS] |
|-------------|-------------|--------------|-------------------------|--------------|------------------|
|             |             |              | Levenberg               | R2=1         | 876              |
|             |             |              | Back Propagation        | R2=0.8       | 897              |
|             |             | XLMiner      | NN                      | Accuracy=70% | 143              |
|             |             | Sipina       | Single Layer Perceptron | 61%          | 570              |
|             |             |              | Multilayer Perceptron   | 66%          | 585              |
|             |             | Tanagra      | Multilayer Perceptron   | 69%          | 288              |
|             |             | Weka         | 10 Fold MLP             | 67%          | 130              |
|             |             |              | 20 Fold MLP             | 66%          | 150              |
|             |             | Proposed     | Back Propagation        | 79%          | 140              |

### References

- 1. Hiral R.P. and Satyen P. (2012). Automated News based ULIP Fund Switching Model. International Conference GCEMP 2012, Awarded as Best Technical Paper, GFJMR ISSN 2229–4651, 3.
- Hiral R.P., Suthar A.B. and Satyen P. (2012). A Comparative Study on Financial Stock Market Prediction Models. *The International Journal of Engineering And Science*, (IJES), 1(2), 188-191. ISSN: 2319 – 1813 ISBN: 2319 – 1805, Indexed in ANED (American National Engineering Database).
- **3.** Hiral R.P., Suthar A.B. and Satyen P. (2014). A Proposed prediction model for forecasting the financial market value according different factors. *International Journal of Computer Technology & Application* (IJCTA) ISSN 2229-6093, 5(1), 131. Impact Factor 2.015 IC Value 5.17.
- **4.** Hiral R.P. and Satyen P. (2014). A Technical and Fundamental Parameters analysis for Financial Market Prediction Using Semantic Analysis.
- 5. Hiral R.P. and Satyen P. (2015). Dynamic IS based Asset Allocation on Crude Trend Analysis – exploring a Hedging Concept. GCEMP-15, GFJMR ISSN 2229–4651, 6.
- Patel H.R. and Satyen P. (2016). Comparative analysis of different statistical and neural network based forecasting tools for prediction of stock data. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, ACM, 126. http://dl.acm.org/citation.cfm?id=2905055. 2905186.
- 7. Patel H.R. and Satyen P. (2016). Comparative Analytical Study for News Text Classification Techniques Applied for

Stock Market Price Extrapolation. nternational Conference on Smart Trends for Information Technology and Computer Communications, 239-243. http://www.springer.com/in/book/9789811034329.

- Hiral R.P., Darji D.N. and Satyen P. (2016). Prediction Model for Stock Market using News based different Classification, Regression and Statistical Techniques (*PMSMN*). ICT in Business Industry & Government (ICTBIG), International Conference on, IEEE Publication, 1-5. http://ieeexplore.ieee.org/document/7892636/.
- **9.** Satyen P. (2009). Deriving Business Intelligence Through Collaborative Cooperative Multi Agent Model For Mutual Fund Asset Allocation. Proceeding of the IEEE national Conference on Computing and Communication Systems CoCoSys-09 at University Institute of Technology, Burdwan 02-04 Jan 2009.
- Satyen P. (2008). A Comparative Study of Data Mining Techniques and Selection Issue. National Conference (Innovative Dimension for Business and Information Technology 23-24 Feb-2008). ISBN: 978-81- 906446-0-0.
- **11.** Satyen P. (2008). Data Mining Supported Integrated Intelligent Advisory Model (IIAM) For Financial Growth. International Conference (ICETAETS) on Emerging Technology and Applications in Engineering, Technology and Science (13-14 Jan-2008) 978-81-906220-1-1
- **12.** Satyen P. (2007). Role of Multi-Agent System in Real Time Business Intelligence. National Conference ENVISION-2007.
- **13.** Parikh S.M. (2008). Analysis And Modeling A Distributed Co-Operative Multi Agent System For Scaling-Up Business Intelligence. Saurashtra University.