
 Research Journal of Computer and Information Technology Sciences ____________________ E-ISSN 2320 – 6527
Vol. 4(3), 1-3, March (2016) Res. J. Computer and IT Sci.

 International Science Community Association 1

A Study and Analysis of Precedence Functions for Operator Precedence
Parser in Compiler Design

Priyanka Agiwal1*, Sarita Sharma1, Kailash Chandra2, Shivlal Mewada3 and Pradeep Sharma1

1Department of Computer Science, Holkar Science College, DAVV, Indore, India
2State Forensic Science Laboratory, Home (Police) Dept., Govt. of MP, Sagar, India

3Department of Computer Science, MGCGV, Chitrakoot, Satna, India
priyankaagiwal15@gmail.com

Available online at: www.isca.in, www.isca.me
Received 29th July 2015, revised 23th January 2016, accepted 7th March 2016

Abstract
The performance of a computer system rely on compiler technology which states that compiler is used as a mechanism in
evaluating architectural approaches before a computer is manufactured. In compiler the parser obtains a string of symbols
from the lexical analyzer and ascertains that the string of token names can be accepted by the grammar for the source
language. Operator precedence parsing is implementation of shift reduce grammar. In this paper we have studied problem
found in the operator precedence relation and precedence relation table. It takes a lot of space in memory to parse a given
string. We try to design an algorithm by which one can construct a directed graph and derive the precedence function table
for context free grammar by which less memory space is enough for parsing an input string and to motivate the researcher,
while showing the future aspects in the area of compiler designing and error solving.

Keywords: Compiler, Parser, Context Free Gramma.

Introduction
A compiler is a set of programs that transforms source code
written in a programming language into another computer
language. A parser is a compiler or interpreter component that
breaks data into smaller elements for easy translation into
another language. The shift reduce operator precedence parsing
is conceptually very simple and very effective technique for
syntactical analysis 1. Shift reduce parsing is a form of bottom
up parsing in which a stack holds grammar symbols and an
input buffer holds the rest of string to be parsed. Bottom up
parsers for a large class of context free grammar can be easily
developed using operator precedence grammar.

According to Yang the parsing process is considered as the
manipulation of binary operations of words 2. Parsing is a
fundamental support to improve the performance of natural
language processing applications such as machine translation
and information retrieval 3.

An operator precedence grammar is a kind of grammar for
formal languages. Regular languages are inadequate for
specifying all but the simplest aspects of programming language
syntax4. To specify more complex languages use context free
grammar such as:
L= {w Є {a,b}* | w=anbn for some n },
L={w Є {(,)}* | w is a well-balanced string of parentheses},
The syntax of most programming languages.

A context free grammar consists of terminals, non-terminals, a
start symbol and productions. Terminals are the basic symbols
from which strings are formed. Non-terminals are syntactic
variables that denote the set of strings. In a grammar one non-
terminal is distinguished as the start symbol and the set of
strings it denotes is the language generated by the grammar. The
production of grammar specifies the manner in which the
terminals and non-terminals can be combined to form strings 5.

An operator precedence grammar is a context free grammar that
has the property that no production has ε or two adjacent non-
terminals in its right hand side 6.
Example- E -> EAE/id
A-> +/-/*

The above example is not an operator precedence parser. The
operator precedence parsers usually do not store the precedence
table with the relations rather they are implemented in a special
way. Operator precedence scheme has been suggested as a
means for constructing parsing algorithms for a large class of
languages. Operator precedence algorithms need smaller tables,
and are very fast in a parse, they lose some semantic
information by disregarding non-terminal symbols 7.

The rest of this paper is organized as follows: In section II, we
describe about the precedence relation between terminals. In
section III, we construct a precedence relation table for
terminals. In section IV, we define an algorithm for precedence
functions and finally in section V, we conclude my paper and
future work.

mailto:priyankaagiwal15@gmail.com
http://www.isca.in,
http://www.isca.me

Research Journal of Computer and Information Technology Sciences _________________________________E-ISSN 2320 – 6527
Vol. 4(3), 1-3, March (2016) Res. J. Computer and IT Sci.

 International Science Community Association 2

Precedence Relation: Precedence relations guide the selection
of handles and have the following meaning:

Table-1
Precedence Relation Meaning8,9

Relation Meaning
x=◦ y x “has same precedence as” y
x<◦ y x “has yields precedence to” y
x ◦> y x “has takes precedence over” y

Rules for obtaining precedence relation between terminal
symbols of a grammar:

x=◦ y – “x has same precedence as y” if there is a production
like A-> “αxβyγ”.
Example: S-> iCtSe then i =◦t and t =◦e

x<◦ y – “x has yields precedence to y” if there is a production
like A->“αxAB” i.e. x immediately followed by a non-terminal.
This non-terminal derives a string A-> γyS , where γ is either ε
or single non-terminal, i.e. y is the first terminal symbol derived
by A.
Example: S->iC+S then C->b and i <◦ b

x ◦>y - “ x has takes precedence over y” if there is a production
like A->“αAyB”. A-> γxS, i.e. x is the last terminal symbol
derived from A.
Example: S->iC+S then C->b and b ◦> +

Precedence Relation Table Construction
It is observed that this parser depends upon a parsing schedule
that it must recommend while analyzing a given input string.
For example:
E->E+T | T
T->T*F | F
F->id
Firstly find the first terminal and last terminal of each non-
terminal.

Table-2
First terminal and last terminal of each non-terminal

Non-Terminal First Terminal Last Terminal
E +,*,id +,*,id
T *,id *,id
F Id id

Now find the precedence relation between terminals:

Same Precedence: There is no same precedence between any
terminals in this grammar.

Yields precedence:
E->E+T then

+ <◦ *
+ <◦ id

T->T*F then
*<◦ id

$ <◦ +
$ <◦ *
$ <◦ id

Takes precedence:
E-> E+T then

+ ◦> +
*◦> +

 id ◦> +

T->T*F then

*◦> *
id ◦> *

 + ◦> $

*◦> $
id ◦> $

For this grammar the precedence relation table is drawn below:

Table-3
Precedence Relation 10

 id + * $
id - ◦> ◦> ◦>
+ <◦ ◦> <◦ ◦>
* <◦ ◦> ◦> ◦>
$ <◦ <◦ <◦ -

The space of table is n^2 where n is the no. of terminal
characters in the grammar.

Implemented Work

Operator precedence parser utilizes precedence functions that
represent terminal characters to whole numbers and so the
precedence relations between the terminal characters are
employed over integral analysis. So for this we design an
algorithm by which we can derive precedence functions
between terminals.

Algorithm: i. Create functions fx for each grammar terminal x
and for the end of string symbol ($). ii. Partition the symbols in
groups so that fx and gy are in the same group if x =◦ y. (There
can be symbols in the same group even if they are not connected
by this relation). iii. Create an inclined sketch whose nodes are
in the groups, next for each symbols x and y do: place an edge
from the group of gy to the group of fx if x<◦ y otherwise if x ◦>
y place an edge from the group of fx to that of gy. iv. If the
constructed sketch has a cycle then no precedence functions
exist. When there are no cycles collect the length of the longest
paths from the groups of fx and gy respectively.

Research Journal of Computer and Information Technology Sciences _________________________________E-ISSN 2320 – 6527
Vol. 4(3), 1-3, March (2016) Res. J. Computer and IT Sci.

 International Science Community Association 3

So by this algorithm construct an inclined sketch by which the
table II is encoded by two precedence functions f and g that
represent terminal characters to whole numbers. Two functions f
and g where the following apply:
if x<◦ y then f(x) < g(y)
if x◦> y then f(x) > g(y)
if x=◦y then f(x)= g(y)

To frame these functions construct an inclined sketch with
vertices fi and gi where i is the ith terminal adapting the given
principles:
If x=◦ y then fxand fy are grouped together and gx and gy are
grouped together.
If x◦> y then an inclined edge is drawn from fx to gy.
If x<◦ y then an inclined edge is drawn to fx from gy.

Applying these principles the precedence sketch for the above
precedence table looks something like this:

Figure-1

Precedence Sketch

Now it is easy to make a table for the f and g values of each
terminal character by signifying f(x) as the long-drawn-out
probable route in the sketch starting from fx such that individual
vertex on this route has lower precedence in compare to its
nearby preceding vertex, similarly for g(x) as well. The
resulting precedence function or long-drawn-out route table
driven from above sketch is:

Table-4
Precedence Functions

 id + * $
f 4 2 4 0
g 5 1 3 0

Conclusion
Compilers that use operator precedence parser do not need to
store the table of precedence relations. The data processing

capacity however can be comfortably handled if we construct an
efficient data structure to show acceptably the precedence
relationship between the terminals. Now it is clear that the data
processing capacity is only n*2 where n is the no. of terminal
characters. Thus this construction of algorithm for an inclined
sketch with the vertices showing functional entities permits
preserving a lot of memory. Using this table as a source, the
operator precedence parser can parse any string given to it as
input. So in this paper our approach provides a fully declarative
solution to operator precedence specification for context free
grammar. But this parser finds difficulty to hold token that has
more than one precedence. So in future our aim is to develop a
new method that solves this problem efficiently.

References
1. Peter Ruzicka (1981). Operator Precedence Parsing

Algorithm is Polynomial in Time. Kybernetika, 17(5),
368-379.

2. Xiao Yang and Jiancheng Wan (2005). A Parsing
Algorithm of Natural Language based on Operator
Precedence. IEEE: Natural Language Processing and
Knowledge Engineering, 73–78, ISBN: 0-7803-9361-9,
DOI:10.1109/NLPKE.2005.1598710.

3. Xiao Yang, Jiancheng Wan and Yongbo Qiao (2006). A
Binary Combinational Grammar for Chinese and Its
Parsing Algorithm. IEEE, 761-766, ISBN: 0-7695-2528-
8, DOI: 10.1109/ISDA.2006.253708.

4. Data Syntax and Semantics (2015). http://www-
compsci.swan. ac.uk/~csjvt/JVTPublications/DSS
(March2006).pdf, 20/07/2015.

5. Alfered V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey
D. Ullman (2007). Compilers. Pearson Education Inc.,
South Asia, 197-200, ISBN-978-81-317-2101-8.

6. WIKIPEDIA (2015) Operator precedence parser,
https://en.wikipedia.org/ wiki/Operator-precedence_parser,
15/07/2015.

7. D.S. Henderson and M.R. Levy (1976). An Extended
Operator Precedence Parsing Algorithm. The Computer
Journal, 19(3), 229-233.

8. Arun Petrick (2015). Operator precedence parser,
http://compilerdesigndetails.blogspot.in/2012/02/operator
-precedence-parsing.html,05/08/2015.

9. Alessandro Barenghi et. al. (2013). PAPAGENO: A
Parallel Parser generator for Operator Precedence
Grammars. International Journal of Grid and Utility
Computing (IJGUC), 113(7), 245-249.

10. Shashank Rajput (2015). Operator precedence parser,
http://cse.iitkgp.ac.in/~bivasm/notes/scribe/11CS10042.p
df,05/09/2015.

gid

g$

f*

f$

g*

g++f+

fid

http://www-
https://en.wikipedia.org/
http://compilerdesigndetails.blogspot.in/2012/02/operator
http://cse.iitkgp.ac.in/~bivasm/notes/scribe/11CS10042.p

