
 Research Journal of Computer and Information Technology Sciences ______________________ISSN 2320 – 6527

Vol. 2(5), 1-15, December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 1

Review Paper

Requirement Engineering Process in Agile Software Development: Review

R. Mazhar Iqbal* and A. Waleed Abbasi

Department of Computer Sciences Bahria University E-8 Shangrilla Road Islamabad, 44000, PAKISTAN

Available online at: www.isca.in, www.isca.me
Received 19th August 2014, revised 15th November 2014, accepted 19th December 2014

Abstract

Agile has gained a lot of popularity nowadays and have become a major source of money for lots of organizations. We have

compared traditional requirement engineering approaches and agile requirement engineering. In addition to this, discussion

over here revolves around agile methodologies, requirement-engineering approaches, and how we perform traditional

requirement engineering in agile software development. On basis of literature, requirement-engineering is discussed in detail

in both traditional and agile software developments along with benefits and challenges and in addition to this,

improvements/proposed ideas needed application of Agile in distributed development environments are proposed effectively.

Keywords: Traditional requirement engineering, agile software development, agile methodologies, RE and Agile, Agile

review, literature review of RE and Agile.

Introduction

Before going into detail, let us have a quick discussion

regarding requirement engineering. Requirement engineering is

simply a process involving proper organization, documentation,

and gathering of all requirements of a system
1
. In addition to

this, it provides a well-documented agreement between projects’

team members and clients, which states that any of the

requirements can be changed depending on the nature of system.

The term requirement engineering normally termed to be

traditional requirement engineering.

Lot of organizations explicitly adopt traditional requirement

engineering approaches. This proves to be the most challenging

part nowadays. This is challenging because software

organizations come across infinite software requirements, which

arise unexpectedly and rapidly
2
. This creates problems for

concerned requirement engineers because many of them are

unable to handle such requirements i.e. users’ issues,

incompleteness or inconsistency of requirements, development

tools, user expectations, time-to-market issues, conflict of

views, communication gaps, unnecessary/unexpected changes,

and lot more
2
.

Agile, on the other hand, have become more popular and

effective among IT experts and software organizations. Agile

basically originated from Agile Manifesto [Beck etal., 2001],

which was about individuals and interactions are preferred over

tools, no or very less documentation, and embrace the change.

This Agile Manifesto covers all development techniques i.e.

eXtreme Programming, Scrum, and Rational Unified Process

(RUP)
 3, 4, 5

.

The paper sections comprise of the following format: Section 2

discusses RE and Agile as a comparison. Moreover, all Agile

and RE methodologies we have to target will be discussed in

this section with a very brief discussion on each. Section 3 is

concerned with a detailed agile requirements engineering

process discussion on basis of literature study and it also

comprises of a detailed survey report carried by Lan Cao and

Ramesh
6
, where comparison is made among all agile RE of

sixteen software organizations along with benefits and

challenges on basis of participants’ comments and views. In

addition to this, individual comparison of all those agile

approaches is being made in general, which use traditional RE

techniques in number of ways. Section 4 is about literature

survey mentioning all existing knowledge regarding conduct of

requirement engineering approaches (elicitation, validation,

analysis etc.) in all agile software development approaches

along with detailed discussion against each agile methodology.

Section 5 will be composed of findings we gathered from

complete literature survey. Section 6 comprises of all proposed

ideas, which relate to gaps and present issues with respect to

agile in developments scenario (on basis of literature) and last

section i.e. Section 7, successfully concludes the paper.

RE and Agile: A Comparison

Let us briefly differentiate both of traditional requirement

engineering and agile methodologies. i. Requirement

engineering totally emphasizes at properly gathering organizing

and documenting all requirements and excludes any live

meetings/conferences. This is what Agile lacks. Agile

emphasizes on minimum or no documentation and involves

many face-to-face meetings. ii. In RE, developing requirements

completely and consistently is due to communication problem

because both users and development team members lack

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 2

communication but agile lets developers develop requirements

as user stories i.e. use cases. These use cases are written in

natural language, provide functional requirements, focus on user

intentions, and include “what” features instead of “how”. iii.

The worst thing of RE is” shall” argument i.e. system shall do it,

and interface shall be manageable etc. On the contrary, Agile is

real-time system, which involves statements as if I want a

system, which can be easily manageable.

Many differences do exist but we have mentioned very few of

them. All of these are of prime importance especially whenever

there is a discussion regarding software development projects.

Agile Methodologies to Target: In early days, when there were

very few companies the problems were very few regarding

requirements and in addition to this, development was very easy

too. This was because there were very few requirements and

changes in requirements very easy to manipulate. With the

passage of time, more companies evolved and field became

vaster, this gave rise to more complex issues regarding

requirements and development. These included requirements

overload, no customer’s engagements, and lack of effective

communications, meeting deadlines, budget issues, and much

more inconveniences
1
. To overcome these issues and

difficulties, IT experts were introducing Agile Manifesto. This

Manifesto focussed on delivery of working product to user and

later on making necessary changes as per his needs and

expectations. Agile Methodologies primarily emphasize on

software development instead of documentation. They

successfully accelerate project deadlines, response to customers’

changes, satisfying users, rapid development, and much more
3
.

Agile methods exist too much in number but few most common

of them include: i. XP commonly known as Extreme

Programming, ii. Methodology of Agile Modeling, iii. Agile

SCRUM Methodology, iv. Agile FDD, iv. Agile ASE, v. Agile

LSE Lean Software Development

Agile Extreme Programming (XP): Kent Beck gave idea of

XP in 2000. Main focus of XP is on effective communication

and rapid feedback
7
. It involves contribution from entire team

along with their collaborations and feedbacks. XP discusses

whole development process along with its future prospects. XP

provides us with four major software development phases i.e.

planning, coding, designing, and testing. The best advantage of

having XP is that it welcomes changes to requirement anytime

during development and timely delivery of project is always

ensured by this methodology
8
.

As far as XP values are concerned, XP focuses on four basic

values, which include effective communications/discussions,

simple designing, change of requirements whenever needed, and

correct requirements’ gathering
8
.

Figure-1

Project Flow in XP
8

XP programming principles include simple and flexible

behaviours. These two factors tend to cause a lot of reduction in

software maintenance costs. Other principle is deep testing

procedure or mechanism. This is also called intensive testing of

software, which surely reduces bugs, which may occur after

delivery of software to customer
8
.

These are very few rules we have listed. Few other principles of

XP include creating user stories, making small releases, iterative

divisions of projects, pair programming, creating test cases, and

much more
8, 9

.

XP never suits to all projects or all companies surely.

Limitations are always there. Many organizations having very

large teams cannot deploy XP because XP needs only a team of

maximum 12 persons. In addition to this, coordination and

coordination among team members as well as client must exist.

Agile Modeling

Whenever you sit for developing any software, the most primary

step, which must never be forgotten, is modelling. It is

considered the most important activity because it opens eyes of

IT professionals by providing them with a lot of complex issues

and problems before proper implementations of softwares.

This is performed naturally before programming because

programmers perfectly think of those critical situations, which

may be risky in future. Scott Ambler in 2002
7
 gave a wide

concept of Agile Modeling by providing professionals with

detailed modelling software comprising of all those values,

rules, experiences, practices, and procedures that are effectively

responsible for successful implementation of any project related

to software development
7
.

Basic aim of Agile Modelling was to develop software, which

would successfully meet customer’s needs their maximum and

developers were using it by combining with XP and RUP

(Rational Unified Process).

Many IT experts call Agile Modelling an extension of XP

because it extends moral values as well as principals of XP,

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 3

which include communication and, courage factors primarily.

Do not get confused with humility issue because here it means

that you do not know anything but others know a lot more than

you do. Therefore, they make valuable contributions to your

project
10

. In same way, principles of Agile Modeling are also

same as those of XP, which include rapid responses, feedbacks,

quick changes, faster results, infinite modeling models,

authentic reasons for modelling, effective and beneficial

meetings among development teams, and much more
10

.

SCRUM: Ken Swaber did initial start of SCRUM. He initiated

this superb methodology in 1995. Right before Agile Manifesto,

SCRUM methodology was thoroughly tested and checked. Due

to similarity in rules, regulations, and principles, SCRUM

joined the list of Agile Methodologies very soon. It manages

and supervises software projects so cleanly and perfectly that

application of simple processes is assured completely and easy

documentations are preferred over high-value or much

exhausted documentation scenarios
11

.

Project management is considered a basic practice of SCRUM,

which effectively lets developers to perform required tasks at

various development stages. SCRUM successfully provides

professionals with a process known as backlog. Backlog is

defined as an area or simply a place, which is comprised of all

those requirements, which remain in pending or unapproved

state for specific projects. Simply there lies a single statement

against each requirement, which is taken under supervision and

consideration of development team for better discussion about

needed details about implementation procedures
11

.

The three persons i.e. Product owner, Members of SRUM i.e.

team members, and SCRUM master are primarily responsible in

this regard. Product owner is the major personality in this

scenario and he is the only one who speaks his own business.

SCRUM team is a well-dedicated and matured team comprising

of developers, testers, designers, professionals, and much more

other roles. This SCRUM team is responsible for direct

communication with clients against each product regarding

detailed requirements. Last but not the least; SCRUM master

keeps all of team members thoroughly united and focussed on

their goals along with better solutions of their problems or

development issues. SCRUM is concerned with phases of

development, which means that all development, testing, and

finishing would be done in each phase. Team cannot proceed to

new phase until or unless they do not complete one phase

thoroughly. Literature has verified that SCRUM fails to define

usability. This is because product owners emphasize on business

values and they mostly do not care about usability issues. Due to

much business hunger, they totally ignore usability factors,

users’ experiences, designing issues, motivations, and skills
12

.

Agile FDD (Feature-Driven Development): Developing any

system is made easy using Feature-Driven Development i.e.

FDD. FDD has its major focus on development, designing, and

building processes. The most amazing fact about FDD is that it

does not need any software model for development.

As far as processes of FDD are concerned, FDD is composed of

five (5) major processes, which are naturally followed in a

sequence. During these five processes, effective design and

development of project is made
13

.

Palmer
13

 discusses these five models as: i. Over All Model

Development, ii. Building list of features, iii. Features for

planning, iv. Features for designing, v. Features for perfect

software building.

Knowing all requirements, scope, and context, development

teams construct a detailed model for the system by a continuous

presentation of a “walkthrough”. This walkthrough illustrates

detailed descriptions of a system to all team members and chief

architects. Necessary object models are discussed and finally a

model is proposed
13

.

Model, which is being built previously provides professionals

with detailed features’ list having all necessary and mandatory

features if a system, which is to be developed. All clients’

needs, functions, and requirements are provided in this list.

These features give rise to a feature set, which is successfully

tested by users for proper validation and completeness.

This planning through feature step includes a complete and

thorough high-level planning. This planning involves

prioritization of features, which are later assigned to

professional programmers.

Design and Build by Features include proper selection of very

small features from feature sets and those teams who make

features selections are called feature teams. Class owners

develop these teams. Few selected features are produced during

these iterative procedures of design and build. Multiple teams

work simultaneously for effective designing and building of

features, which include coding, unit testing, code or design

inspections, and much more. After successful results, finished

features are being put into main build and iteration cycle re-

continues within a new set of features
13

.

Talking about FDD, one must never ignore roles of individuals.

Major and prime roles of Feature Driven Development are role

of project managers in some organization, Role of chief

architects, Role of development managers, role of chief

programmers, Role of class owners, and finally the role of

domain experts. In the same way, supporting roles are total five

in number, which include release manager, lawyer or language

lawyer, system administrator, build engineer, and toolsmith.

Few other roles include testers, deployers, and technical

writers
13

.

Finally, practices are necessary in FDD. These include Domain

object modelling or DOM, Coding, Feature Teams, Regular

Inspections, Builds, Configurations, and Progress reporting.

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 4

Adaptive Software Development: This development

methodology provides a platform or roadmap for iterative

development of large systems. In this methodology,

simultaneous prototyping, iterations, and incremental

developments are performed
14

. This was an idea of ASD that

waterfall approach would only work for properly-defined

environments. We all know that changes are always welcome in

software scenarios so there must be a system, which should

effectively manage such changes. Each cycle of ASD finishes

with focus group review of clients. During these review

meetings, developers and experts find a finalized application.

The possible outcomes of these meetings are changed or

modified requests. ASD never refer any schedules for JAD

sessions.

ASD is carried in three successive phases. These phases are

speculation, collaboration, and learning. Speculation is the

second name of planning about uncertainties or weaknesses.

Collaboration surely involves teams’ contributions in project

along with their importance and learning always refers to

mistakes or non-repetition of mistakes along with proper

changes in requirements
 14,

page 18.

For detailed description regarding these three phases, we must

keep in mind that speculation is a planning for future results. If

you have any uncertainty in your project or product or you feel

anything, which may prove it poor, you must follow this

speculation feature of ASD. Similarly, communication and

sharing ideas among others is something good. Collaboration

over here refers to regular and effective communication among

team members. This may include anything like discussions,

reviews, focussed groups, personas, strategic plannings, and

much more. Collaboration has been the most important factor in

software industry always. Training of employees or users is

equally important to that of tools and equipments. This means

that if you are well trained, you can produce fruitful results.

However, if you are not well trained or badly trained or not

enough trained, you would not only suffer alone but also your

whole project along with your organization would suffer more

than 50 percent of before. Therefore, learning is mentioned here

in ASD. Learning would teach developers in so effective ways

that they would not ever make repetitions in future; these

reputations may include anything like coding, designing, or any

issue. Therefore, learning is important in each aspect of life.

ASD mainly focuses on results and outcomes instead of tasks

and activities being performed. ASD does not actually specify

general roles or responsibilities explicitly because it is all

teamwork. One-person i.e. executive sponsor is completely

responsible for perfect development and deployment of a

product. Yes! JAD sessions may define some roles like project

manager, team lead, facilitators etc.

ASD is composed of highly professional and talented teams

because it focuses on large systems’ development. Therefore,

for large or complex system developments, IT professionals are

hiring special trained teams so that they do not let company

suffer in future.

If you need to divide these phases, you must then make

divisions, which include project, initiation and adaptive cycle

planning in first phase i.e. speculation. Concurrent component

engineering is being added as the part of collaboration phase
 14

page 84.

Every professional first trains his or her staff, which is

mandatory for proper system use and knowhow of a system.

This is because if someone is a newbie, he or she may come

across that system soon. Quality review, final questions/answers

and successful release of a system is included in learning phase

respectively
14

page 84.

Jim Highsmith and Sam Bayer worked at rapid application

development and proposed idea of adaptive systems

development. This methodology is concerned with basic

adaption of any process during software development
15

.

Lean Software Development: As far as lean development is

concerned, it is composed of two major parts. First, one is

fastest process to attain best quality flow and the other one is a

process, which captures knowledge for better repetition, quality

increase, and reusability in iteration cycles. Few steps need to be

taken in consideration for this purpose (These are provided on

the basis of product development model of Toyota)
16

. i.

Strategies of development must be kept separate or different

from execution stages. ii. All processes must be managed and

maintained differently with regular checks. iii. Meetings need to

be held for discussing scopes of each iteration phase. iv.

Organization must collaborate in all departments and learning

process must be effectively increased. v. Interrupts need to be

handled with extreme care.

Traditional product development and lean development are two

different approaches
17

. Lean development is usually concerned

with prototyping and testing phases. On the contrary, traditional

development involves design freezing in very early stages. This

means that design gets ready as soon as possible and is

delivered to concerned persons early in morning
 17, 18

. Quality

and usability factors played a vital role in breakdown of Lean in

manufacturing industries. Traditional business practices also

failed and had no comparison with Lean. Lean is no doubt

unique and different from traditional approaches because

traditional approaches focus on linear development but lean

focuses at planning and development of one complete feature

before next feature
18

.

The word Lean has come from manufacturing industry
18

.

Toyota first introduced Lean when there was a dire need of

Lean. The basic drawback of Lean was that it would cause

business loss more than 90% if a very small single mistake were

made. The major problem, which occurred in manufacturing

industries, was that customers would demand more than before.

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 5

In addition to this, they would expect too much and as a result,

their satisfaction would never be there. This refers to a fact that

customers’ values were discouraged and they were facing many

problems. In the same way, manufacturing companies were also

facing many problems i.e. management issues, manufacturing

issues, requirement issues, and much more
18

.

Let us have few basic principles of lean development
19

. i. Value

specifications must be from customer’s point of view. This is

because customer satisfaction is of prime importance in all

cases. ii. All steps in value set must be identified by explicit

elimination of each step, action, and practice. iii. Product flow

must be made smooth and fast. iv. Greater transparency is

required and perfection is needed instead of wastage
19

.

Approaches for Requirements Engineering: Process of

requirements engineering includes a detailed, well-managed,

organized, and well-documented requirements, which one needs

for a system. These requirements do let us know about what

actions are to be taken but how things will work is never

discussed by requirement engineering process
20

. Requirement

engineering is also called as traditional requirement engineering

process and it usually occurs in early stages of some software

project. The most critical and widely used technique of

requirement engineering process is requirements management.

Infinite definitions and descriptions regarding requirement

engineering process do exist but Sommerville and Sawyer has

defined requirement engineering very uniquely
21

.

“A requirements engineering process is a structured set of

activities which are followed to derive, validate and maintain

system requirements document.”

The three best techniques or generic activities of requirement

engineering are extracting requirements or requirements

elicitation, analyzing requirements deeply and carrying out

perfect analysis, and validating all needed requirements

properly. Later on, these activities are supported by

requirements management
1, 21

.

Let us have a quick review regarding these three basic activities

of requirement engineering process along with few issues
1
.

Requirements Elicitation: This phase i.e. requirements

elicitation phase successfully gathers all desired requirements

and provide engineers with necessary system domains or scopes

by constant collaboration with clients or customers or

stakeholders. These domains can be anything like discussions,

system constraints, values, application domains, and much

more. Elicitation phase gathers or elicits all requirements using

techniques i.e. Interviews, Use Cases, Observations, Focus

Groups, Brainstorming, and Prototyping.

Requirements Analysis and Negotiation: Requirements

Analysis phase analyzes all of the requirements in detail. This

includes their completeness, traceability, mature deign,

testability, feasibility, necessity, consistency, and many other

factors. If there are any conflicts in requirements, they are

successfully solved by negotiation process. This process

involves both customers and developers sit on a table and

discuss all issues regarding requirements. Main techniques

being used by professionals are JAD sessions, and Modeling.

Requirements Validation: Requirements validation phase

validates all of system’s requirements. Are these requirements

valid for system, which we are going to develop? Are they

acceptable? All those necessary works or tasks, which we need

to perform during validation phase, are proper documentation of

requirements, complete standards of organization, and detailed

organizational knowledge. These are said to be inputs actually

for validation phase. All those results or outcomes, which we

must expect include all reported problems and necessary steps,

which we have to take to overcome these issues or problems.

Proper testing of requirements and necessary requirements’

reviews are considered the tools of requirements validation

phase.

Requirements Engineering Issues: Requirement engineering

is considered to be the most critical and primary phase for any

software project. If requirements are not complete, consistent,

accurate, precise, or accurate, whole project suffers, which

effectively create infinite issues and problems for projects’ team

members. Therefore, traditional requirement engineering needs

to be performed accurately. Let us have a quick overview

regarding those issues, which normally arise during

requirements elicitation, specification, and validation/

verification phases
22

.

Requirements Elicitation Issues: Requirements elicitation

provides professionals with issues, which are sub-divided into

three main categories. The very first category is concerned

about scope i.e. requirements may either lie outside of boundary

or projects’ scope or they may define too much or too less

information. Second category is concerned about

communication or understanding factors, which includes lack of

knowledge or understanding or access issues regarding

developers and customers. The last category refers to

requirements’ changing or their constant varying behaviours.

This also leaves bad impact on developers or technical

professionals. IT experts try to solve these issues by constant

interviewing, discussions, round-table meetings, use cases, and

prototyping
23

.

Requirements Specification Issues: This phase i.e.

specification is said to be the centre of requirements engineering

process because it lies in centre like elicitation, specification and

verification/validation. The major issue, which arises in

requirements specification, is that their proper documentation or

better understanding is not done. How will system work and

how system will behave etc are some common issues. For

example, if you have to develop a system, which rings the bell

when door opens. Now, is this information complete? No. This

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 6

is because one must know what would be tone of bell, which

will open the door, what would be system’s domain, and many

other related factors. The main objective is to provide

unambiguous, complete, consistent, and testable requirements.

Such ambiguities were solved by concept of use cases by Booch

in 1999. In addition to this, many IT professionals propose that

putting all requirements in natural language is the best solution

of such requirements’ specification issues. Still if you are unable

to record all requirements due to their complex natural language

behaviours, you can put them down using latest methodologies

i.e. Pseudcodes, Finite State Machines, Decision Trees, and

much more
22, 24

.

Requirements Validation/Verification Issues: Requirements

verification occurs before validation phase and not vice versa.

Validation is concerned with evaluation of product itself but on

the other hand, verification includes planning, coding, and

proper documentations. Issues, which arise during these phases,

include traceability issues, inactive management of

requirements, testing issues, and much more. This can be

overcome easily by tracing techniques, to assure that

development is on right track, and changes are well dealt.

Agile Requirements Engineering: Lan Cao and Ramesh

analyzed sixteen software development organizations and

finally provided us with seven major Requirement Engineering

practices, which as follows.

Agile RE in Various Organizations: For better understanding

of concepts, i.e. how requirements engineering of Agile

differentiates itself from traditional requirement approaches,

numerous organizations apply Agile RE in their own ways. For

this purpose, Lan Cao and Ramesh
6
 visited more than sixteen

software development organizations and only those, which

apply agile approaches. Out of total sixteen organizations, the

first ten of them were considered the highest participants in

Agile. By highest participants, it was meant that these 10

organizations did not follow some certain “brand” of agile but

they followed some of those practices, which agile methods

suggested. Agile methods like Scrum or XP suggested those

relevant and close practices. The other six organizations were

those, which exactly followed agile methods like XP, Scrum or

both of them
6
.

How Data Was Collected?: On basis of proper reviewing of all

documentations, semi structured interviews, and participants’

activities, data was collected, extracted, and synthesized. In all

sixteen organizations, there were interviews of top-level

managements, quality assurance teams, developers, designers,

product managers, team leads, and project managers. Research

domain was limited to qualitative methodology with respect to

data collection.

How Data Was Analyzed?: Data analysis totally based on

grounded theory methodology
25

. This methodology is a well-

structured qualitative research method. Data analysis was

performed in three different ways i.e. open, axial, and selective

coding
6, 25

.

Open coding method allowed us to find out major data groups

and label them as per their frequency. These frequencies include

agile RE practices, agile RE positive impacts, and agile RE

issues. The other method i.e. axial analysis involved successful

building of relationships among those found practices, benefits,

and challenges of agile RE. Final coding analysis method

compared agile RE practices and provided professionals with

larger patterns. In this process, two coders performed their

individual jobs and results were compared later, which

effectively resolved all differences by detailed discussions.

Finally, data was recorded mentioning all common RE practices

across those sixteen organizations.

One should be keep in mind that Agile methodologies totally

depend on requirement engineering generic activities for

gathering and managing requirements. Many variations for

requirement engineering approaches do exist in agile

environments. Whole teams in agile environment collaborate

among one another and gather necessary requirements with

constant communications with clients
26

. Also, it should be noted

that documentation in both Agile RE and Traditional RE is

dependent a size of team an organization has. If size is small, it

is ok and you can manage with small documentations but if size

is explicitly large, it would be almost impossible for you to

make one single thing understand multiple times to multiple

users or people
27

.

Agile has its main objective of protection against wastage of

requirements, which is commonly known as Lean Software

Development as discussed in later section in thorough detail
28

.

Identification of Agile RE Practices: On basis of research and

constant participations, Lan Cao and Ramesh
6
 successfully

identified seven agile RE practices common in those

organizations. i. Front end face-to-face Communications, ii.

Iterative requirements Engineering, iii. Priority based

requirements engineering, iv. Requirements Change

Management, iv. Constant prototypes and communications, v.

Test based software development, vi. Review Meetings and

Acceptance Tests.

Agile RE Practices, Benefits, and Challenges: This will

discuss all of the Agile requirements engineering practices in

detail along with their pros and cons. This would all base on

participants’ views and comments.

Face-to-face Communications

According to participants, agile RE discourages documentation

and encourages exchange if ideas among customers and

developers. Therefore, preference is always given to face-to-

face discussions for effective requirements engineering instead

of documenting anything.

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 7

Positive Aspects: All sixteen organizations had no

documentation procedures implemented and would depend on

face-to-face discussions. By participants’ comments, this is

beneficial because requirements can be changed at any stage

and customers can accomplish their projects in unique ways.

Moreover, these communications prove to be more beneficial

than documentations because they save time of both customers

and development teams.

Negative Aspects: The worst thing reported by participants was

constant interaction. This meant that one has to interact with one

another and this high-quality interaction is not always possible.

This can give rise to serious issues regarding requirements and

requirements gathering may suffer from this. One more thing

needs to be mentioned over here that face-to-face

communication is always based on customer’s access,

customer’s attitudes, and trust factor among customers and

developers. Lacking a single out of these can be prove to be a

great challenge in face-face domains of agile requirement

engineering.

Iterative Requirements Engineering

In fourteen out of sixteen organizations, requirements are not

well-defined. All of the requirements evolve during

development stages. Iterative requirements engineering is

concerned with requirements gathering in each development

cycle. Most of the organizations follow this iterative strategy.

Their requirements engineering processes start at each

development cycle
29

. On the start of each successive cycle,

customer accesses development teams and provides all

necessary implementation strategies they should follow. He

provides them with all those features, which are to be added

during implementations or necessary coding strategies. All

requirements are being discussed in thorough detail among

clients and developers and in the end, both of them come up

with some implementation plans, fine-grained requirements, or

preliminary designs.

Positive Aspects: As far as reported benefits are concerned
 6, 25

,

this iterative RE methodology builds a strong relationship

among customers and developers. Moreover, all of the

requirements in this phase are crystal-clear, complete, finely

grained, precise, accurate, and consistent because of easy and

early access of customers along with their effective

participations.

Negative Aspects

Participants were discussing three major issues. i. One of them

is cost and schedule estimation issues. Requirements evolve

during developments and constant interaction is going on, which

results in improper cost/size and schedule estimations. This

proves to be the biggest challenge in agile RE. ii. The other

reported challenge is of less or no documentation. This is

because when there is an unexpected lack in communication

anytime like any personal issue, no access, or any issue, having

no or very less documentations can be problematic. This causes

problems in software metrics, proceeding of process until one

get access to customer or development team, or anything, which

needs to be reviewed from documentation but not discussion.

iii. Third most important reported challenge is ignoring all non-

functional requirements. Usually customers ignore non-

functional requirements and rely on functional ones only. Few

of them include maintainability, performance, scalability,

portability, and much more.

Requirements Prioritization

All organizations successfully prioritize their all requirements

during development with continuous evolvement of

requirements. Their prioritizations are done after when they are

added or modified. In agile requirements engineering,

requirements prioritization process works quite differently than

traditional requirements engineering prioritization. In traditional

RE, requirements are prioritized only once but on basis of

sixteen software development organizations, it is proved that

agile RE prioritizes requirements in each development phase. In

addition to this, requirements prioritization in agile involves bug

fixing, changes to existing functionalities, and refactoring

techniques. One more reported difference between traditional

RE and agile RE is there i.e. traditional RE prioritizes

requirements on basis of many factors like risk, performance

cost, implementation etc. However, in agile RE prioritization

only depends on one and only factors i.e. only those business

values, which are defined explicitly by customer.

Positive Aspects: Development teams better know what

customers want. Therefore, prioritization is made on basis of

customers’ needs and satisfactions. Moreover, interaction

between the two parties also helps in better prioritization of

these all requirements in agile RE. Moreover, agile RE allows

developers to reprioritize all requirements, which traditional RE

never provides.

Negative Aspects: Business values are surely important but

keeping them as primary aspect of prioritization is quite

challenging in agile RE. Many issues may arise like scalability

issues and requirements’ accommodation issues. In addition to

this, continuous reprioritization may also lead to instability

issues.

Change of Requirements

 Requirements change is concerned with development as per

users’ needs or satisfactions. Participants reported two types of

requirement change mechanisms. These included

adding/dropping necessary features and also making a small or

big change for already implemented features as per needs. At

the end, customers can provide developments team with a

feedback and can request any change if it s not met.

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 8

Positive Aspects: Constant and early validation of requirements

never involves many changes. Maximum change can be of some

spellings issues, colour issues, and much more. Therefore, cost of

change requirements decrease significantly.

Negative Aspects: Change in requirements is very less in agile

RE but the major issues being faced by both agile members and

customers is of refactoring. This is because refactoring always

claims that software’s original behaviour would never change but

if there is a need of refactoring in agile RE, one has to re-write

whole code from scratch. This is because participants claimed that

refactoring never provides issues regarding inappropriate

architecture or inadequate structure. Therefore, developers have

to throw away codes and re-write from scratch.

Prototyping

Many organizations try settling requirements specification very

quickly. This helps them in eradicating all errors related to

software. Software organizations intend to develop those

softwares, which are their self’s operational prototypes and

completely refined codes having all necessary features.

Positive Aspects: Instead of complex documentations, many

software development organizations rely on prototyping

technique to better involve their customers/clients in validation

and verification scenarios. Eleven out of sixteen organizations

successfully used prototyping methodologies.

Negative Aspects: Many organizations faced prototyping issues

regarding scalability, security, and robustness. Many customers

stopped to accept longer software development life cycles, which

were mandatory for proper and robust implementations.

Test-Driven Development

In this mode of development, developers usually write test cases

before implementations or functional coding. These test cases

provide you with a brief idea about the system you are going to

develop. Writing explicit specifications also come under its

domain in agile RE.

Positive Aspects: In agile environments, many software

companies, by making use of test cases, try to attain all

requirements related to codes or necessary implementations. This

makes requirements changes easy and you can come up with new

and fresh ideas.

Negative Aspects: TDD is surely important and beneficial but

most of organizations are unable to follow this practice. This is

because developers do not feel comfortable with it. They claim

that it needs a lot of discipline, constant flow, and regularity and

most of them are not habitual of writing test cases before coding.

One more challenge, which is reported by participants i.e. TDD

needs in-depth understanding of all requirements because it

refines all low-level specifications in iterative ways.

Review Meetings and Acceptance Tests

Review meetings are held by many software organizations for the

purpose of requirements validation. These meetings usually occur

when software development ends. Professionals involved in these

meetings are developers, designers, quality assurance experts,

testers, management’s personnels, and many other stakeholders.

Developers provide a quick demonstration of products along with

their core features and relevant questions are being asked by

quality assurance experts and customers.

Acceptance tests are also considered tools for requirements

validation and verification. Few software organizations consider

acceptance test to be the part of requirements specifications

phase.

Positive Aspects: The main purpose of these meetings is to get

feedback against developed products. At the end of meeting,

detailed report is provided to stakeholders and Quality Assurance

departments, which is comprised of status if project, project main

goals and objectives, factors that help in attaining customer trust,

and properly identifying all development issues.

Negative Aspects: Participants claimed that this agile RE practice

mainly focuses a lot on requirements validation, which was never

the case in traditional requirements engineering approaches. No

formal verification methods are clearly addresses and no

consistency checking occurs during this phase. QA personnels

develop acceptance tests because implementing these acceptance

tests in most of organizations is difficult.

Comparing Agile RE Practices: All sixteen organizations were

clearly examined and interviewed. Table below mentioned details

all practices and number of organizations flowing them.

Table1

Agile requirements-engineering practices in 16 organziations
6

Adoption Level

Face-Face

Communication Iterative RE

Extreme

Prioritization

Constant

Planning Prototyping

Test-Driven

Development

Reviews

and Tests

High 8 9 10 8 8 5 11

Medium 8 5 6 6 3 1 4

Low 0 2 0 2 0 0 1

None 0 0 0 0 5 10 0

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 9

Table above provides us with a detailed overview regarding

each practice being applied in all software companies. This

shows that which practice is adopted by how many

organizations. For example, reviews and tests are performed in

eleven organizations at higher levels but four at medium levels

and in the same way, ten organizations follow extreme

prioritization techniques at higher levels and so on. All

comparisons are made at high, medium, and low levels, which is

basically the degree of following of each organization for each

practice. Levels are decided as per organizations needs and

resources and also it is decided in the basis of challenges being

faced by each organization. If any challenge is faced by any

organization against each practice, it would be placed in suitable

level depending in its implementation strategies.

Is Agile RE Preferable Over Traditional RE?: By surveying

these software development organizations, we have come to

know that basic feature, which distinguishes agile RE from

traditional RE is iterative development. It never means that agile

RE is strongly preferred over traditional one because one can

never be sure about agile’s unexpected outcomes. Agile

provides quick responses and rapid productions but its

challenges must never be ignored. This is because agile never

suits to all organizations. Therefore, software organization has

to decide itself depending on cost, schedules, efforts, and

resources that which methodology or practice they have to adopt

for betters accomplishment of their software projects as well as

success of the company.

Comparable RE Techniques used by Agile Methodologies
(Individual Comparison): All generic activities of traditional

requirement engineering i.e. requirement elicitation, analysis,

and validation do take place during agile methodologies.

Discussion is further carried out regarding such scenarios.

Agile applies these approaches if size of their teams is very

small and in addition to this, agile suits to small projects only. If

bigger projects are over there, teams would be making use of

some other suitable techniques for requirements gathering along

with requirements management. One must keep in mind that

discussion in this section is not done about requirements

engineering techniques in agile methodologies but individual

agile methodologies are discussed along with their major tools

or techniques they use for requirements engineering
30

.

Scrum: Before discussing requirements engineering process,

we must give a close look at Scrum. It is an agile methodology,

which effectively maintains and manages complete development

of a system. All factors, which affect this agile methodology are

flexibility, maintainability, reliability, and adaptability. The

techniques being adopted by major Scrum are mainly product

backlogs, sprints, and daily scrums. Scrum emphasizes on

team’s work. Collaboration, and hard work to provide excellent

results to software development industry. Whenever there is a

discussion regarding requirements engineering process, product

backlog is of primary importance. All of the main characteristics

of a product, further extensions, more advancements or

improvements, bugs, and core functionalities are mainly are

contained by this product backlog in prioritized manner. Sprint

is defined as n iteration of 30 days. Product backlog is also

known as requirements changing container, which comprises of

changed requirements. After each 30 days iteration, all those

tasks, which are highly prioritized, are

transferred and technically moved from one phase to another i.e.

product backlog to sprint backlog. During development phases

or sprints, nobody is allowed to make any change in

requirements but users can change or modify requirements as

per their needs by again prioritizing them or reprioritization

process for next coming sprints. At the end, a grand round table

meeting takes place, which is known as sprint review meeting.

In this meeting, customer is being presented a demonstration by

senior members about product’s functionality and features and

customer provides them with effective and usable feedbacks
1
.

Requirements engineering in Scrum is done using various

techniques mentioned below.

Time Boxing: Time boxing provides professionals with lo of

meanings. A time box is basically a standard time period for set

of various activities. In scrum, time boxing is used for

minimizing work-loads by work break down procedures i.e.

sprints.

Face-to-face: Better and more effective communication takes

place in Scrum, which involves both Scrum members and

product owner. This is one of the prime factors for handling

requirements engineering in SCRUM.

Late Decisions: Having late and deferred decisions seriously

affects requirements gathering and management in Scrum. In

these cases, requirements are modified and developed very late.

As a result of this, development is affected providing poor

impressions to clients.

Changes in Requirements: Product backlog changes during

SCRUM requirements engineering.

Extreme Programming (XP): Extreme programming always

emphasizes overall software development process and all those

tasks and activities, which are mandatory during software

development project. Many requirement engineering techniques

are widely adopted by XP in comparison to traditional one.

XP makes best use of interviews and prioritization. The major

requirements engineering technique being adopted by XP is

story cards. Story cards’ concept can be compared easily to

requirements elicitation phase. We all know that XP relies only

and only on business values for their customers. Experts say that

story cards must never be compared to use cases. This is

because use cases are just user interactions with system but

story cards comprise of almost everything, which users need.

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 10

What system should do, how system should behave, how much

effort is needed, how much time will it take for completion, and

much more similar scenarios are being written in thorough

details, which give users a brief overview of a system by

complete brainstorming allowing them to make prioritization of

stories for coming iterations.

One more technique, which XP adopts is of acceptance tests.

These tests are defined and verified by customer himself for

successful story accomplishment. XP relies on very short

releases, which distinguish it with prototyping concept. The

major difference between the two is that XP provides users with

a tested and completely clean codes but prototyping is a

scattered format of requirements and can be hacked. Users can

effectively have detailed discussions among them regarding all

issues they usually face for next releases
1
.

Agile Modeling (AM): Basic purpose of agile modelling is to

develop necessary models relevant to software development

projects. No specific requirements engineering tools are used by

this methodology but very few of its practices make best use of

tests and brainstorming. Face to face communications are made

possible by using certain models being developed by this AM

methodology. Moreover, all those standard models, which are

followed for documentation purposes are also included in this

domain
1
.

Agile Crystal Methodologies: Agile crystal methodologies are

mixed with many methodologies out of which any suitable

methodology is chosen for development process. Requirements

engineering techniques being adopted by these crystal

methodologies include prototyping, testing, product workshops,

overall product reviews, and reviews per each product’s release.

Feature Driven Development (FDD): One must keep in mind

that Feature Driven Development methodology i.e. FDD is

never concerned with overall system’s development but it is

only focused at software’s design and implementation phases
26

.

FDD is basically concerned with domain model building where

domain experts build domain models, which comprise of major

attributes, needs, functionalities, classes, and relationships are

mentioned. Feature is a terminology used n FDD for client’s

functionalities or core features. Weekly presentations of 30

minutes are given to clients for demonstrating current status of

features and detailed report writing. This report writing is a

requirements engineering technique being used in FDD
1
.

Dynamic Systems Development Method (DSDM): The two

major requirement engineering techniques adopted by Dynamic

Systems Development Method or DSDM are feasible and

business studies. Both of these techniques allow professionals to

perform requirements elicitation of base requirements. All other

requirements are gathered during software development process.

You must know that DSDSM has no specific guidelines or

limitations for making use of requirements engineering

techniques because any RE techniques can be induced within

software development process suitably. Testing techniques and

JAD sessions are widely applied in DSDM
1
.

Agile Adaptive Software Development (ASD): Adaptive

Software Development of Agile i.e. Agile ASD is all about

iterative development projects. It is usually a structured

framework for perfect development of very large and complex

systems so that project should never lead to failures. The three

major techniques being adopted are speculation, collaboration,

and learning. Speculation is all about planning or requirements

management, which allows professionals to plan for future

prospects. Collaboration is similar to customer involvement

because customers and team members collaborate among

themselves to find out necessary conflicts and issues along with

necessary agreements. Learning is concerned with training or

change of requirements during development process, which

means that developers or customers learn from their pas

discussions and discuss more for better results
1
.

Lean Software Development: This is much difficult to do

because identifying and reducing wastage is much time-

consuming. In lean software development, requirements once

started wasting lead to further fluent wastage in later stages. It

can be understood by simple example. If an industry produces

more than it is needed, it would be complete wastage along with

loss of resources and energy usage. In perspective of

requirements engineering, in early stages i.e. gathering or

elicitation, Agile allows customer interactions or face to face

interviews, which cause basic requirements evolution

sometimes. This increases costs and more resources are uses. As

a result, results being obtained are more than required. To

overcome this, waste is handled in early stages. In agile

environments, for lean software development or management

of wastage of requirements is done by making best use of

techniques i.e. requirements prioritization and incremental

releases
18, 28

.

Traditional Requirements Engineering in Agile

(Overall Comparison)
All generic requirements engineering activities i.e. elicitation,

analysis, and validation are used in Agile but in very different

context. Overall comparison is made here on basis of a literature

survey.

Customers’ Availability and Involvements: The basic and

most important factor, which is primarily responsible for

performing requirements engineering in agile is customers’

availability or involvement. This is concerned with constant

feedbacks and up-to-date discussions. Moreover, both parties

i.e. customers and development teams may attain a more better

view of requirements, and this step of customer involvement is

considered to be the most primary goal for RE. General example

can be taken by keeping this concept in mind that a single

person i.e. customer can answer all issues, questions, and

problems being faced by developers so precisely and accurately

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 11

that they can provide him with best results. In addition to this, it

would be beneficial for them to take right decisions and act

smartly.

Same customer involvement is also done in traditional

requirement engineering phase i.e. elicitation phase, which

allows you to gather data from interviews, questionnaires,

brainstorming, focus groups, observations, use cases, and much

more.

The major difference, which distinguishes agile from traditional

RE is that customer involvement in traditional RE is only done

during elicitation phase but in agile development, it is included

in whole software development phase. This is what

professionals lack in actual software development phase in

traditional RE.

Constant Interactions/Interviews: Agile mainly focuses on

constant interactions between professionals and customers. This

involves solving necessary problems, having maximum

communications, answering questions, asking questions, and

many other relevant factors. All misunderstandings,

misinterpretations, and misleading information are eradicated by

this constant interaction in Agile. Alternatively, constant

interaction is said to be a form of interviews One more

advantage of having agile interviews is that many customers

come to know skills of development teams by interacting with

them through interviews so that they may check their

development skills for better performance in software projects.

Requirements Prioritization: Similar to traditional RE, agile

also applies prioritization among its methodologies. The main

goal of developers or development teams is to perfectly deliver

necessary software to clients having high-priority features.

Change in requirements take places during development phases.

Therefore, all of the requirements are being managed and sorted

as per their priorities and are updated regularly in each phase.

This helps clients to have a more clear view of all system

requirements including their impacts on system. Lean software

development makes best use of this technique more effectively.

JAD Sessions: Both ASD and DSDM make bets use JAD

sessions in various ways. Customer involvement increases a lot

by these JAD sessions. In ASD, these sessions enable customers

and developers to sit on a round table and discuss necessary

features of a product. These sessions provide useful results

provided that head manager r top level manager leading these

sessions act smartly. The most amazing fact about these sessions

is that in ASD these short sessions never force all customers to

have face-to-face session physically or they do not necessarily

need to be On-Site like XP. These sessions are held in almost

each phase of software development for best results.

In DSDM, these sessions allow professionals and customers to

better understand whole system in starting phases i.e., if system

is new for them. This increases promotion, communication,

discussion, cooperation, collaboration, speculation,

understanding, and through team work.

Requirements Modeling: Do not get confused with modelling

you came across in Agile Modeling technique. It is surely true

that modelling is only preferred and performed in Agile

Modling methodology i.e.AM but its use with respect to

requirements engineering varies significantly. In AM, modelling

is concerned with better understanding of a very small and

minor part of system, which is to be developed. Models in AM

are drawn on white paper and are useless after project is done or

their purpose is met. Many of them never come under domains

of proper and complete documentation procedures.

But when we talk about requirements engineering perspectives,

modelling provides us with some different meanings. Here in

RE, variety of models comes under through discussion. These

models in RE provide a quick and brief overview of a complete

system to be developed by making use of all other models.

Moreover, all of these models in RE become permanent

attributes of complete documentations and all of them need to

remain properly updated and effectively maintained.

Modelling concept of RE is identical to that of FDD i.e. Feature

Driven Development. The finally developed model defines

whole of the system along with its detailed features and all of

the development bases on this developed model. We know that

deigning and implementation phases in FDD manipulate

iteration, therefore, requirements changing can be done later on.

One should always keep in mind that this modelling approach

never guides you about final system but allows you to initiate

development more effectively and accurately.

Requirements Documentation: Less or no documentation in

agile has been the problem for developers always. It’ a great

challenge being faced by many professionals for software

development process. Though documentation cerates long-term

problems yet it’s beneficial to speed up development process.

Merits and demerits always lie in between. For example, new

comer comes in organization and needs to know about software

or its attributes, having no documentation may let him suffer too

much. Moreover, if he asks any other team member, it would be

too complex to train him about software development

fundamentals. Therefore, one more purpose of documentation is

knowledge sharing.

One more factor, which is concerned with documentation is

change of requirements. This means that developers need to

make changes or customers do that regularly are not

documented. This may result in serious future issues, which

may arise if the same team member or developer leaves the

organization tomorrow or comes across any mishap

unexpectedly, new person joining the team would never know

how system was changed or which system implementations are

made and so on. Mostly in agile environments, customers

request team members to effectively document design attributes

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 12

when system is migrated or there is any chance of expecting any

change in the system.

To talk more about agile methodologies, they are more

successful than traditional ones because they take very less time,

they offer very les documentation, and they provide rapid

development results.

Traditional RE in the other hand focuses too much on

documentation, which answers almost each and every question

of the customer. In simple words, agile methods lack

documentation and traditional methods are over documented.

Requirements Validation: Validating requirements is a major

aspect with respect to requirements engineering perspective

including both traditional and agile developments. In agile

development methods, software validation is done by

professional and review meetings and technically proven

acceptance tests. This gives a significant rise to customer’s

motivations towards software development process and

development team also because regular demonstrations are

given to customers by team leaders or developers. Project’

schedules, management scenarios, costs, effort-estimations,

cost-estimations, risk management issues, quality issues, and

everything relevant come under these domains. All agile

approaches have their own ways to validate requirements.

Many of them make best use of various meetings. These

meetings are basically review meetings in which customers

collaborate with developers in many ways. They come to know

in detail that what does system do, what is current status, how

system behaves, and much more. If any question arises in their

minds, they feel free to ask to developers, who are present in all

review meetings actively. Moreover, any suggestions,

functionalities’ discussions, change in requirements, feedbacks,

strengths, weaknesses, advantages/pros, disadvantages/cons,

limitations, and many other things are widely discussed between

customers and developments teams. In addition to this,

customers validate that all requirements of the system are well

understood and no ambiguities lie in between them. If system

works as it was expected customers finally run acceptance tests

to check it. It it’s not working according to expected results,

they demand clarifications from development teams. Later on,

after successful review meetings, software product reaches final

production phase, which eventually leads to a deployment phase

of first version. This very first deployment phase provides

development teams with awesome returns on their investments.

XP is a special case for developers always because it is mainly

concerned with face to face interaction of customer with

developers. This creates great rise in factors i.e. trust,

responsibility, and performance. Moreover, chances of asking

and answering questions become quite easy in this domain.

We all know that agile methodologies are mostly dependent on

small releases, therefore, validating process of requirements is

no doubt primary and most important. This is because a constant

feedback is at least received against each release form the

customer’s side. Agile mainly follows the concept of

evolutionary prototyping as far as requirements validation is

concerned because it also needs in-time delivery of product with

customer feedback. A small difference lies in testing phase of

agile because agile focuses more on testing than evolutionary

prototyping
31

.

Requirements Management: Requirement management

effectively needs requirement changes, tracking, traceability,

and proper documentation. Tradition development approaches

strictly follow these requirement management issues in a lot of

detail but Agile methodologies lack in some of these issues. It

does not mean that agile has no mechanism for saving or

managing requirements but lack of documentation or very les

documentation creates lots of limitations for agile methods.

If there is a signed contract between two software companies,

documentation means a lot. This is because one can change his

views any time and unexpected moments never inform before

coming. This is the major reason why agile methodology relies

more on cost, time, and expenses rather than wasting its time on

other useless activities. Moreover, agile methodologies widely

emphasize at fixed price contracts. Instead of documentation,

the major objective of Agile is to build a strong relationship and

trust among its customers. Delivering all projects rapidly and on

time and focusing only on software development phases instead

of jotting requirements down gives a strong positive impression

to clients.

Many agile approaches perform requirements management in

various formats.

Index cards or user stories are comprised of all major

requirements with necessary details. Maybe level of detail is

low, but all of these requirements are managed by the use of

cards or product backlogs. Though it is done at minor level,

which means that agile eradicates many if necessary details but

it uses all of those details during software development process.

This slow management process is said to be lazy requirements

elicitation process.

DSDM also allows requirements management by constant track

of all changes. When business study has necessary changes to

apply or repeat, record is separately kept in some other

documented.

Scrum makes best use of product backlog for effective

requirements management. The best feature of product backlog

of scrum is that it ever deleted old requirements but refers to all

new requirements by explaining or mentioning that why those

requirements were changed, modified, or deleted.

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 13

Observations and Brainstorming: Both of these techniques

are not properly defined by any of agile approaches but they do

exist in them within certain extent.

Observation surely comes under requirements elicitation phase,

which gathers users’ requirements by looking at the tasks of

others or by observing others. The same thing happens in agile

when some of the users or developers forget to mention any

requirement or any details regarding work. Later on, observing

system’s behaviour, new requirements can be suggested by

developers or proposed by the customers for effective results.

That’s how observation approach is applied.

Brainstorming on the other hand is bringing or introducing

creative ideas for better development. Agile approaches widely

make use of this approach indirectly. For example, face to face

communications, review meetings, change in requirements,

feedbacks, and many other procedures involve this approach

because creative and new/fresh ideas are always welcome by

experts in any development scenario.

Non-Functional Requirements: Non functional requirements

give rise to serious issues in agile development. This is because

customers want best and fast results and they always ignore

performance, workloads, efficiency, and safety issues.

Requirements are elicited in agile approaches without keeping

an eye on portability, maintainability, and many other non-

functional issues. Mostly non-functional requirements or NFRs

are closely related and equally important to that of functional

requirements and are almost not expressible in many cases. For

example, customer in agile development environment wants you

to develop a gaming system, which must be a third person

shooting game. Though all requirements will be provided by

him like gaming modes, strategies, rules, processors, and

graphics etc yet he will always ignore minor requirements that

may be any ethical or organizational or any requirements like it

should not be a copy of any idea of other game, which standard

should it follow for gaming, its usability, flexibility,

serviceability, quality, and many other factors. Therefore, NFRs

in both traditional developments as well as agile developments

must never be ignored in any case. We do not mean to consider

all of NFRs but at least all those should be included, which

affect system’s performance in any way especially when final

product is released.

Waste of Requirements (Lean): Requirements in lean

development are always saved from wastage. This refers to any

ambiguity, which takes place gathering of requirements. Waste

is eradicated successfully during lean manufacturing.

Proper identification of waste becomes necessary in Agile

modelling. This avoids further creation of waste in later stages

of development. It is obvious that if you develop a system for

which you gather many requirements, which are more than

needed. These would be totally useless requirements. You have

to get rid of them. Lean made best use of these by providing

reduction and prioritization mechanism to professionals.

These all are requirements gathering and minimizing

requirements procedures. Triage process can be related to them

in some scenarios but details would vary surely. Moreover,

useless requirements include writing more code with higher

costs, increased complexity of code, delayed deliveries, using

more resources than needed, and many other factors are added.

Findings (On Basis of Literature Survey)

On basis of literature, we found many techniques for problems

resolving, which allow professionals to manage requirements

efficiently.

Sources We Have Used: We have compared both Traditional

RE approaches and Agile RE approaches. Following table

illustrates this.

Table-2

Sources We Used

Source

IEEE

Google Scholar

5

3

Count

Agile RE Limitations and Improvements: i. Most of customer

interaction is done in Agile by prototyping. It is not possible to

gather all requirements from just one person. Therefore,

elicitation must occur from various stakeholders. ii. Open

questions, meta-questions, and JAD sessions can help removing

a lot of conflicts. iii. Agile relies on validation or testing but not

on quality assurance. iv. N verification is there in Agile but this

would be possible if both validation and verification occur at the

same time. v. Agile does not address requirement engineering in

distributed agile development. This can be done effectively by

making use of certain tool or technique. vi. Agile can make use

of UML, and negotiation tools for better development scenarios.

vii. Along with configuration management, Agile should also

rely on requirements management practices for better tracking

of customer needs/requirements. viii. Project plans must be

constant in all releases

Proposed Idea (On Basis of Issues/Gaps)

Agile has never discussed requirements engineering in

distributed environments. Distribution of software saves both

time and cost. Moreover, distributed development relies on

software development in various geographical surroundings.

Cultural differences, large distances, and various time zones

lead t weak communications, which adversely affects the

projects. Many issues arise in it like communication,

documentation, training, work distributions, and much more.

Improvements in communication, proper visits, team divisions,

team coaching, improving documentations, and effective use of

best tools can help removing these issues.

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 14

Major Differences

Table-3

Differences between Agile RE and Traditional RE
33

Agile RE Traditional RE

Suitable for projects

where development is

done along with

requirements gathering for

quick releases and

updated customer

feedbacks

Traditional RE does not address

whole development life cycle and

suits to those projects, which are

enhanced versions of some

applications.

In Agile development,

organizations do not know

about their initial needs

and all needs and

requirements evolve

during development

depending on customers’

feedbacks

Traditional RE defines all goals

scopes, definitions, effort

estimations, cost estimations,

team sizes, and everything related

to development before

proceeding.

Change in requirements is

applicable in Agile

Requirements once defined can

never be changed later on

Number of stakeholders

are limited in agile along

with project sizes

Traditional RE involves many

stakeholders and a big elicitation

process

Procedures for waste of

requirements are

discussed and applied in

Agile

Traditional RE doe not concern

with any wastage. Yes. It allows

triage a bit similar technique to

lean

Social Networking Tools: Social networking tools, which

allow video conferences, chats, and many other reliable tools

can help this way for distributed developments. i. Bug-fixing

tools can be effective. ii. Knowledge centres and collaborative

environments are also recommended
29

.

Hire Skilled People: You must hire skilled people by yourself.

Do regular visits and check status of developments off and on.

Moreover, you may not all skilled people in all regions

therefore, be careful in all aspects.

Documentation: Agile offers no or very less documentation.

This needs to be improved because without documentation or

sufficient manuals or information, new trainers or professionals

cannot provide better outputs.

Meetings: Agile though offers regular meetings within each

release but in distributed environments, geographical meetings

must be adopted by making use of many tools like Skype or any

conferencing tool.

Final Result: It is impossible for Agile to carry out requirement

engineering in these environments because Agile needs

customers to interact physically face to face, which never is

possible in these environments. Moreover, agile needs less

documentation. It is never possible that you hire bets

professionals from various corners of the world or specific

areas. Therefore, applying Agile RE in distributed environments

causes great RE issues.

Research Questions: How Agile practices can be applied to

distributed development environments and which of them can

be best?

Sub Questions: How RE under the chosen Agile practice would

work?

Conclusion

All discussion over here revolves around traditional RE, Agile

RE, and all Agile approaches. Moreover, RE in Agile and Agile

in RE is also discussed along with all challenges and benefits.

Finally, need of improvements, comparisons, findings, and

application of Agile in distributed environments are provided to

fill out gaps and provide necessary and useful ideas.

References

1. Frauke Paetsch: Requirements Engineering and Agile

Software Development, IEEE, (2003)

2. B. Boehm, “Requirements That Handle Ikiwisi, COTS, and

Rapid Change,” Computer, July 2000, 99–102 (2000)

3. Beck K., et al., The Agile Manifesto. 2001: p.

http://www.agileAlliance.org

4. Cockburn A., Selecting a project’s methodology, IEEE

Software, 17(4) (2000)

5. Cohn M., Ford D., Introducing an Agile Process to an

Organization, available at:

http://www.mountaingoatsoftware.com/articles/Introducing

AnAgileProcess.pdf) (2002)

6. Ramesh B., Cao L. and Baskerville R., (5 AUG 2010), Agile

requirements engineering practices and challenges: an

empirical study. Online Published at: 13 NOV 2007.

Information Systems Journal, 20, 449–480. doi:

10.1111/j.1365-2575.2007.00259.x) (2010)

7. Kent Beck Extreme Programming explained, Addison-

Wesley, (1999)

8. Extreme Programming. What is Extreme Programming?

[Online] Retrieved 18th March 2009. Available at:

www.extremeprogramming.org) (2009)

9. M. Cristal, D. Wildt and R. Prikladnicki, Usage of SCRUM

Practices within a Global Company. Global Software

Engineering, 2008. ICGSE 2008, IEEE International

Conference on, 222-226 (2008)

10. Agile Modeling Home Page. Effictive Practices for

Modeling and Documentation. [Online] Retrieved 17th

March 2009. Available at: www.agilemodeling.com (2009)

Research Journal of Computer and Information Technology Sciences __________________________________ ISSN 2320 – 6527

 Vol. 2(5), 1-15 December (2014) Res. J. Computer and IT Sci.

 International Science Congress Association 15

11. M. Cristal, D. Wildt and R. Prikladnicki, Usage of SCRUM

Practices within a Global Company. Global Software

Engineering, 2008. ICGSE 2008, IEEE International

Conference on, 222-226 (2008)

12. Duncan R., “The Quality of Requirements in Extreme

Programming”, The Journal of Defence Software

Engineering, June (2001)

13. Palmer S.R. and Felsing J.M., A Practical Guide to Feature-

Driven Development. Upper Saddle River, NJ, Prentice-Hall

(2002)

14. Highsmith J.A., Adaptive Software Developmet: A

Collaborative Approach to Managing Complex Systems.

New York, NY, Dorset House Publishing (2000)

15. Bayer S. and Highsmith J., RA Dical software development.

American Programmer 7(6), 35-42 (1994)

16. Yasuhiro Monden, Toyota Production System, An

Integrated Approach to Just-In-Time, Third edition,

Norcross, GA: Engineering and Management Press, 0-412-

83930-X (1998)

17. NCMS study, Product Development Process –Methodology

and Performance Measures Final Report, January 31, 2000

(2000)

18. Er. Kirtesh Jailia, Mrs.Sujata, Mrs.Manisha Jailia,

Mrs.Manisha Agarwal, Lean Software Developmen,

International Journal of Software Engineering and Its

Applications 5(3), (2011)

19. http://shapingsoftware.com/2009/06/15/introduction-to-

lean-software-development/ (2013)

20. Alan M. Davis: Software Requirements Revision Objects,

Functions, and States, Prentice Hall PTR, (1994)

21. Sommerville I., Sawyer P., Requirements Engineering: A

good practice guide, John Wiley and Sons, 1997, ISBN: 0-

47-97444-7 (1997)

22. Romi Satria Wahono, ANALYZING REQUIREMENTS

ENGINEERING PROBLEMS, Proceedings of the IECI

Japan Workshop 2003 Chofu Bunka Kaikan Tazukuri,

Japan

23. [Christel-91] Michael G. Christel and Kyo C. Kang, Issues

in Requirements Elicitation, Technical Report CMU/SEI-

92-TR-12, ESC-TR-92-012, September 1992 (1992)

24. [Rumbaugh-99] James Rumbaugh, Ivar Jacobson, and

Grady Booch, The Unified Modeling Language Reference

Manual, Addison-Wesley, (1999)

25. A. Strauss and J. Corbin, Basics of Qualitative Research:

Techniques and Procedures for Developing Grounded

Theory, Sage Publications, (1990)

26. Pekka Abrahamsson, Outi Salo, Jussi Rankainen and Juhani

Warsta: Agile software development methods - Review and

analysis, VTT Electronics, (2002)

27. Cockburn A., Agile Software Development, Addison-

Wesley (2002)

28. Poppendieck T., Poppendieck M., Lean Software

Development: An Agile Toolkit for Software Development

Managers, Addison-Wesley (2003)

29. M. Fowler, Using an Agile Software Process with Offshore

development, http://martinfowler.com/articles/agileOffshore

.html, July 2006 (on March 10, 2010)

30. Pekka Abrahamsson, Outi Salo, Jussi Rankainen and Juhani

Warsta : Agile software development methods - Review

and analysis, VTT Electronics, (2002)

31. Poppendieck T., Poppendieck M., Lean Software

Development: An Agile Toolkit for Software Development

Managers, Addison-Wesley (2003)

32. http://en.wikipedia.org/wiki/Lean_manufacturing#Types_of

_waste

33. M. Fowler, Using an Agile Software Process with Offshore

development, http://martinfowler.com/articles/agileOffshore

.html, July 2006 (Retrieved on March 10, 2010)

