
 Research Journal of Computer and Information Technology Sciences _______________________ISSN 2320 – 6527

Vol. 11(1), 1-6, June (2023) Res. J. Computer and IT Sci.

 International Science Community Association 1

Review Paper

Concept of High Performance Computing

Ashish Kumar
*
, Pawan Patnaik and Sargam Gupta

Department of Computer Science and Engineering, Bhilai Institute of Technology, Durg, C.G., India

ashishsahu96sky@gmail.com

Available online at: www.isca.in
Received 3rd September 2021, revised 13th February 2023, accepted 15th May 2023

Abstract

For any computational problem there can be more than one solution with different computational resource demands and

execution time. One of the prominent factors while considering the performance of various solutions is execution time. High

Performance computing techniques and models deals with the challenges of handling problems at massive scale using

computing infrastructures, tools, techniques and parallel algorithm designing programming skills. With the advent of new

HPC paradigms and significant improvements in processor design, it’s now feasible to employ HPC techniques on many new

compute intensive domains. The game changer in HPC has been the developments of the last decade with the introduction of

GPUs and FPGAs which together have revolutionized the HPC computing space. This paper presents a comprehensive

review of the three major computational models used in HPC – multi core, cluster and GPGPU.

Keywords: GPGPU, HPC, MPI, OpenMP, CUDA.

Introduction

Necessity is the mother of invention. We are constantly under

the greed for more and more computing power to handle the

challenges of the Bigdata revolution. Access to high

computational power allows us to explore possibilities across

many different compute intensive fields. The field of HPC have

been addressing the issues of massive computational power for

handle these kinds of compute intensive workloads. Traditional

HPC have focused around aggregating computational power by

using clusters of computational nodes which communicate

through well defined message passing paradigms like MPI. In

the last 2 decades, developments in VLSI and processor

technology have equipped our desktop processors to be multi

cores. This opened up new parallel computing paradigms like

multi core computing on shared memory architectures. Both

compilers and programmers leveraged this increased

computational capabilities of multi core processors.

GPU and CPU are two processing units
1
. GPUs have been used

as a dedicated piece of hardware for accelerating image and

graphics workloads. The HPC space experienced a game

changing transition when GPUs were used as a code

acceleration device for general purpose computations tasks too.

GPGPU is the term used when GPUs are employed for general

purpose programming
2
.

Sharing the workload of CPU and taking away the burden of the

parallel part of the code to be executed in the multiple cores of

the GPU. This idea of using GPUs for offloading some of the

computational workload of the CPU proved to be a very

promising design optimization for many domains like data

analytics, artificial intelligence, machine learning.

The idea of GPGPU was materialized by the introduction of

CUDA. Initially abbreviated as Common Unified Device

Architecture, CUDA was a C –based library from NVidia that

offloaded the parallel sections of the c code to the GPU cores

while the sequential part was executed by the CPU. An efficient

work sharing compiler nvcc developed by Nvidia was used to

compile the CUDA programs written in C.

Core is small and individual processor built into a big CPU.
It is an integrated circuit that implements independent physical

execution at same time. If system has 2 cores then it executes

two separate executions at a same time that enhance the speed

of computing.

Enhance the speed of system need multi-cored system CPU is

best for serial processing but it has limited numbers of core

maximum 128 cores CPU that only handle 128 different

executes at a time. Now GPU comes under the picture with

many numbers of core to operate many numbers of execution at

a same time and have features of High throughput, good for

parallel operation. There are many companies who are in the

market of GPU – Nvidia, AMD, Asus, etc. Nvidia GPU RTX-

3090 has a core size 10496 and CPU Amperes Altra max has

max 128 core.

Methodology

To understand the concept and methods first come to understand

the threads. Basically threads are the highest level of code

execution by processors it is virtual component that manage the

task. If you have lines of code (program) to execute but it takes

a finite time to execute that program wholly.

mailto:ashishsahu96sky@gmail.com
http://www.isca.in/

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 11(1), 1-6, June (2023) Res. J. Computer and IT Sci.

 International Science Community Association 2

Here a technique to execute that code less than that finite time is

threading that program in different levels and run those levels

separately at same time in that core that is threading. Number of

threading is greater than two is multi-threading.

Now threading in single core leads concurrency behavior means

it execute the threads in sequential manner if one program has 2

threads (T1 and T2) those threads can run one by one if start

with T1 but after some time it Executes T2 as well and come

back to T1.

Figure-1: Concurrency vs parallelism

3
.

Real life example of concurrency: We can take an example of

railway counter there is only one ticket clerk but the line is too

long. Then clerk announced to create two lines one for men and

other for women (Threading). That is threading big line into two

small lines and executes to provide a ticket sequentially one

man after one woman and so on. The line thought it is short to

proceed.

Threading is useful when we crawling the web page the site

load their information simultaneously load the interface but it is

very useful when system has multi- core that is basically a

parallelism. In parallelism number of program can execute on

different threads and saves the computing time that makes the

system high performance computing system.

Real life example of parallelism: If there is two clerk for ticket

booking and that work for two threads as above one for men and

other for women then the booking of tickets for lines may

execute with very fast. Here we can relate the clerk as Core,

whole line as Program and line for men and women are Threads.

For high performance computing system should have multi-

core, multi-threads for better performance.

There is big role of memory also we can call it as RAM

(Random Access Memory) that are volatile in nature mean if the

program exhausted or the system turned off them their stored

memory can lost. Means it free those spaces that they occupied

during the session. There are two types of model named
4
 i.

Shared memory model: In shared memory model the system has

only one memory for many number of cores (CPU) like our pc,

laptops that share one memory for their multi-core architecture.

ii. Distributed memory model: In distributed memory model the

CPU has their own local memory. Means every core has their

own memory and those systems are interconnected virtually.

Now lets take an example to understand how we can increase

the performance of computing using parallelism.

One set of program has 40% dependent and 60% are

independent: Here dependent program can execute only by

sequential process but that independent program can execute

parallel. Now consider the system has 2 core to run for parallel.

If execute whole program using sequential method that takes

time called Tseq is 100% x. For parallel operation 40% are

dependent that execute only by sequentially but 60% are

execute as parallelly with 2-cores means 30% - 30% percent

each cores. So parallel time Tpara 40% x+60% x/2 = 70% x unit

time.

Now Performance = Tseq/Tpara = 100% x/ 70% x = 1.4285

This means if we perform some program parallelly then we can

enhance the system performance by 42.84% (as per example)

this is basically AMDAHL'S law. AMDAHL’S law is used to

check the system performance when their programs executes

parallelly with respect to when all programs executes

sequentially.

There are techniques/APIs available to enhance the performance

are OpenMP, MPI, and CUDA.

OpenMP
5
: OpenMP has evolved as the de-facto standard

accepted by the industry and the academia for multicore

computing model that employs the fork-join thread model for

parallel execution
6
. By itself OpenMP is a standard and it is

implemented by many vendors across various operating systems

in languages are Fortran and C/C++. It is the set of compiler

directives and that provides supports for parallel programming

in shared memory architecture
7
. OpenMP is a library for parallel

programming in SMP. OpenMP identifies parallel regions as

block of codes that may execute in parallel. Developers insert

compilers directives into their codes to instruct the OpenMP

runtime library to execute the region in parallel. OpenMP

included header file for program #include<omp.h>

Open MP has two types of threads: i. Master thread execute for

sequential section that is execute from beginning to end with

thread id is 0. ii. Slave threads executes for parallel section that

are forked with directives called #pragma opm parallel into

number of threads as core available in that system with thread id

1 to N. Where N is the number of core.

OpenMP fork the set of program in number of threads as have

core on that system using command in that region if system

have 2 core it created two threads for parallel operation.

 #pragma omp parallel{}

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 11(1), 1-6, June (2023) Res. J. Computer and IT Sci.

 International Science Community Association 3

And there is other option if you have 2 core system and want to

create a 4 threads by using: omp_set_num_threads(4);

Compile the program using: gcc -fopenMP <filename.c>

To execute the program: ./a.out

OpenMP program:

Figure-2: Code for Adding two sets of data using OpenMP.

Figure-3: Result of addition and allotment of threads.

MPI
8
: MPI is abbreviated as Message Passing Interface system

developed for distributed and parallel computing in distributed

memory model. In the MPI model number of computers

connected through a network and distribution middleware that

enables computers to coordinates and to share the resources.

MPI is a communication protocol for parallel programming. It

has library of routines used to create parallel program in C and

FORTAN languages. A set of libraries exist for using standard

on HPC. User can write program in C/C++, FORTRAN which

can be portable used to communicate between source and

receiver through routines.

Blocking call: Blocking call blocks (stops) the executions until

the operation finishes. If someone sends a message to the

receiver but the message don’t pass until the receiver

acknowledge that message. It executes synchronously. Real life

example of Blocking call: Phone call, when one is trying to

connect to the other one through a phone call one can’t send its

message until other picks that phone call.

Non-Blocking call: Non-Blocking call don’t block (stops) the

execution and pass that message to the receiver without their

acknowledgement. And sender not waiting for receiver response

sender continues their other program after just send a message.

It execute asynchronously.

Real life example of Non-Blocking call: When sender sends a

text message to the receiver there is no need to acknowledge

that message. Sender can execute other works after send a

message.

MPI communicates to other computers with the help of MPI

Routines. MPI routines are basically a technique to pass the

information from one end to other end.

MPI routines are
9
: MPI_Send, MPI_Reduction, MPI_Bcast,

MPI_Scatter, MPI_Recv, MPI_Gather, MPI_Allgather, etc.

Send – MPI_send() function is used to send data from one node

to other node it has six arguments that are void*data: Address of

data

Int count: length of data has to send

MPI_datatype: Type of data like int, float

Int destination: World rank (other node) where to send data

Int tag: tag should be match to send or receive data from one

node to other node

MPI_comm: It is communicator

Receive – MPI_Recv() function is used to receive data from one

node to other node it has seven arguments that are void*data:

Address of data

Int count: length of data has to send

MPI_datatype: Type of data like int, float

Int source: World rank (other node) where from send data

Int tag: tag should be match to send or receive data from one

node to other node

MPI_Comm: It is communicator

MPI_Status*: It is status for only used in receive function

Broadcast: Broadcast function is used to send a same message

(red block) to different nodes from one node.

Real life ex: If one person wants to send their marriage

invitation card to their friends that is broadcasting invitation.

Figure-4: Broadcast routine

10
.

Scatter: Scatter function is used to send different – different

messages to different – different nodes from one node.

Real life ex: University result of every student.

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 11(1), 1-6, June (2023) Res. J. Computer and IT Sci.

 International Science Community Association 4

Figure-5: Scatter routine

10
.

Gather: Gather function is used to gather different messages

from different nodes to one node.

Real life ex: Collecting everybody’s data in a single database

Figure-6: Gather routine

10
.

Reduction: Reduction function is used to make reduction of that

data using arithmetic operations.

Here sum of all node is 16 that reduces number of nodes to one

single node.

Figure-7: Reduction routine

10
.

All gather: All gather function is used to gather all messages

from different nodes to every nodes.

Real life ex: There are 3 friends everybody has different units of

syllabus but everyone needs whole 3 units so they sends

everybody’s copies to each other that they have all 3 units to

everyone.

Figure-8: Allgether routine

11
.

MPI executes as processes to multi computers that have their

own memory and interconnected through a network

Steps to install MPI on ubuntu ..

sudo apt-get install mpich

if its installed properly then the command

man mpicc will show the manual for mpicc

To compile MPI code -

mpicc <filename.c>

To run MPI code -

mpirun -np x ./a.out

x (it is the no. of processes that we spawn) you can use any

number like4, 5 , 6 etc

MPI program
12

:

Figure-9: Code sending data using send routine MPI.

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 11(1), 1-6, June (2023) Res. J. Computer and IT Sci.

 International Science Community Association 5

Figure-10: Result of send routine.

CUDA: CUDA is abbreviated as Compute Unified Device

Architecture
13

. It is a platform and application of programming

interface model created which is used parallel computing

schemes to faster the performance of the system. It is created by

the Nvidia Company. CUDA is essentially for C/C++ with few

extensions that allow one to execute function on GPU using

many threads in parallel. It is general purpose graphics

processing unit. It is a platform which used GPU for general

purpose and parallel computing. CUDA execute the program

with number of threads on GPU with high speed computing.

For high speed computing we have to use Graphical Processing

Unit (GPU) instead of only using Central Processing (CPU)

Unit because GPU has more number of cores than CPU and

compute at high speed and better throughput comparatively

CPU. GPU can forked one program into number of threads and

executes those threads parallelly within less time. CPU is Host

and GPU is Device

Figure-11: Comparison of CPU and GPU Cores

14
.

Architecture of GPU
15

: GPU is divided into grids and every

grids again divided into block now Blocks have number of

threads to executes.

It is basically GRIDS >> BLOCKS >> THREADS

In example picture consider Grid 1 here consider block (1, 1)

has 3 dimensional spaces 16 Threads in one block, 6 block in

Grid1 so grid one has total number of threads are 6x16 = 96

Threads. So it has many applications
17

.

Figure-12: GPU’s Kernel, Host and Device

16
.

CUDA code execution:

Allocating memory spaces for data on Host by using

cudaMalloc.

Copy data from CPU to GPU using cudaMemcpy

HostToDevice.

CPU initiates the GPU compute kernel (programming for GPU)

GPU’s CUDA cores execute the kernel in parallel.

Copy back the result from GPU to CPU cudaMemcpy

DeviceToHost.

CUDA program:

Figure-13: Code and result of adding two sets of data using

CUDA.

Results and discussion

Result of OpenMP: It work on shared memory architecture

based on threads of program to execute and it is directive based

programming. OpenMP program written to add two arrays for 4

slave threads and one master slave. So with the use of OpenMP

one program forked with number of threads and execute those

program parallelly to enhace system performance.

Figure-14: Result of addition and allotment of threads.

Result of MPI: It is work on distributed memory architecture

based on processes of program to execute and it is message

passing style, MPI used multi-cored interconnected computer to

executes program to enhance the performance of system.

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 11(1), 1-6, June (2023) Res. J. Computer and IT Sci.

 International Science Community Association 6

Figure-15: Result of send routine.

Result of CUDA: It is work on GPU in threads, comparatively

high throughput, CUDA allocate the memory location for

program in GPU and execute those program and send back to

CPU. If someone thought it takes more time if we send codes on

GPU from CPU and send back to CPU after execution but wait

it not takes time to copying and if we use millions of transaction

to executes then it gave high throughput because GPU uses

numbers of cores to execute program that’s why it is very fast.

Figure-16: Result using CUDA.

Conclusion

Traditionally HPC space has mostly multi core and cluster

computing models but GPUs have revolutionized the HPC space

by providing speed-ups up to factors of 100. To leverage the

true computational power of GPU, a programmer has to well

aware of the underlying GPU architecture, the best algorithms

for data decomposition and the best practices of the GPU

programming model involved. GPU clusters sharing the

workload among multiple GPUs and communicating through

MPI are the most commonly used model in modern data centers

for today’s’ HPC workloads. Newer GPUs are being designed

by vendors and are opening new avenues of research.

References

1. Caulfield, B. (2009). What’s the Difference Between a CPU

and a GPU?. NVIDIA. URL: https://blogs. nvidia.

com/blog/2009/12/16/whats-the-difference-between-a-cpu-

and-a-gpu.

2. Stephan Perkins (2021). GPGPU: Definition, Differences &

Example. https://study.com/academy/lesson/gpgpu-

definition-differences-example.html 21/04/2021

3. Shivprasad Koirala (2021). Concurrency vs Parallelism.

https://www.codeproject.com/Articles/1267757/Concurrenc

y-vs-Parallelism 23/04/2021

4. Gabriel southern (2021). Main difference between shared

memory and distributed memory. https://stackoverflow.

com/questions/36642382/main-difference-between-shared-

memory-and-distributed-memory 28/04/2021

5. Arnab Chakraborty (2021). What is OpenMP?.

https://www.tutorialspoint.com/what-is-openmp 30/04/2021

6. Ashwini Ms. and Bhugul M. (2017). Parallel computing

using OpenMP. IJCSMC, 6(2).

7. Blume, H., von Livonius, J., Rotenberg, L., Noll, T. G.,

Bothe, H., & Brakensiek, J. (2008). OpenMP-based

parallelization on an MPCore multiprocessor platform–A

performance and power analysis. Journal of Systems

Architecture, 54(11), 1019-1029.

8. LLNL (2021). Message passing interface. https://hpc-

tutorials.llnl.gov/mpi/ 01/05/2021

9. MPI (2021) Message passing interface.

https://wstein.org/msri07/read/Message%20Passing%20Inte

rface%20(MPI).html 02/05/2021

10. LLNL (2021). Collective communication routines.

https://hpc-tutorials.llnl.gov/mpi/collective_communication

_routines/ 05/05/2021

11. Wes Kendall (2021). MPI scatter gather all gather.

https://mpitutorial.com/tutorials/mpi-scatter-gather-and-

allgather/ 08/08/2021

12. Andrey V Tabakov and Alexey A Panzikov (2019). Using

relaxed concurrent data structure for contention

minimization multithreaded MPI program. Journal of

Physics, 1399(3), 033037

13. Fred OH (2021). What is CUDA?.

https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/

13/05/2021

14. Sikdar (2021). Sandipan Sikdar. https://medium.com/

@sikdar_sandip/cpu-vs-gpu-1e1264204920 15/05/2021

15. Ghorpade, J., Parande, J., Kulkarni, M., & Bawaskar, A.

(2012). GPGPU processing in CUDA architecture. arXiv

preprint arXiv:1202.4347.

16. CUDA (2021). Thread and block heuristics in cuda

programming. http://cuda-programming.blogspot.com/20

13/01/thread-and-block-heuristics-in-cuda.html 20/05/2021

17. Samel, B., Mahajan, S., & Ingole, A. M. (2016). Gpu

computing and its applications. International Research

Journal of Engineering and Technology, 3(04).

https://study.com/academy/lesson/gpgpu-definition-differences-example.html
https://study.com/academy/lesson/gpgpu-definition-differences-example.html
https://www.codeproject.com/Articles/1267757/Concurrency-vs-Parallelism
https://www.codeproject.com/Articles/1267757/Concurrency-vs-Parallelism
https://www.tutorialspoint.com/what-is-openmp%2030/04/2021
https://hpc-tutorials.llnl.gov/mpi/
https://hpc-tutorials.llnl.gov/mpi/
https://wstein.org/msri07/read/Message%20Passing%20Interface%20(MPI).html
https://wstein.org/msri07/read/Message%20Passing%20Interface%20(MPI).html
https://hpc-tutorials.llnl.gov/mpi/collective_communication_routines/
https://hpc-tutorials.llnl.gov/mpi/collective_communication_routines/
https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/
https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://medium.com/@sikdar_sandip/cpu-vs-gpu-1e1264204920
https://medium.com/@sikdar_sandip/cpu-vs-gpu-1e1264204920
http://cuda-programming.blogspot.com/2013/01/thread-and-block-heuristics-in-cuda.html%2020/05/2021
http://cuda-programming.blogspot.com/2013/01/thread-and-block-heuristics-in-cuda.html%2020/05/2021

