International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Species richness in community forestry and exploration of relationship among area, flora and fauna

Author Affiliations

  • 1United for Sustainable Development, Kathmandu, 44600, Nepal
  • 2Kathmandu Forestry College, Kathmandu, 1276, Nepal

Res. J. Agriculture & Forestry Sci., Volume 9, Issue (2), Pages 32-43, April,8 (2021)

Abstract

Forest biodiversity is increasingly threatened as a result of human being, and to discourage its loss, urgent need to apply all the possible measures has been realized. Study of species richness has great importance to support in the conservation, resource management and sustainable development planning. However, its data deficiency and resulting unclear relationship among area, flora and fauna are major concerns. The purpose of this study was to study incorporation status of species richness into operational plans, and to identify relationships among area, flora and fauna through assessing species richness in the community forests of different geographical regions of Nepal. We observed trivial number of species mentioning in operational plans than they really existed. Furthermore, there was weak positive correlation between size of the area and species richness and we found comparatively good species richness even in the community forests with smaller areas. Similarly, the correlation between flora and fauna was moderately positive and we observed the number of flora greater than the number of fauna in most of the community forests of terai/siwalik and hill but fauna was higher in mid-mountain. Besides this, overall species richness was found to be highest in terai/siwalik and the least in mid-mountain.

References

  1. Butler, C. D., & Oluoch-Kosura, W. (2006)., Linking Future Ecosystem Services and Future Human Well-being., Ecology and Society, 11(1). https://www.jstor.org/stable/ 26267788.
  2. Harrison, P. A., Vandewalle, M., Sykes, M. T., Berry, P. M., Bugter, R., de Bello, F., Feld, C. K., Grandin, U., Harrington, R., Haslett, J. R., Jongman, R. H. G., Luck, G. W., da Silva, P. M., Moora, M., Settele, J., Sousa, J. P., & Zobel, M. (2010)., Identifying and prioritising services in European terrestrial and freshwater ecosystems., Biodiversity and Conservation, 19(10), 2791-2821. https://doi.org/10.1007/s10531-010-9789-x.
  3. Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014)., Changes in the global value of ecosystem services., Global Environmental Change, 26, 152-158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
  4. Díaz, S., Fargione, J., Iii, F. S. C., & Tilman, D. (2006)., Biodiversity Loss Threatens Human Well-Being., PLOS Biology, 4(8), e277. https://doi.org/10.1371/journal.pbio. 0040277
  5. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012)., Biodiversity loss and its impact on humanity., Nature, 486(7401), 59-67. https://doi.org/10.1038/nature 11148
  6. Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Díaz, S. (2000)., Consequences of changing biodiversity., Nature, 405(6783), 234-242. https://doi.org/10.1038/35012241
  7. McNeely, J. A., Miller, K. R., Reid, W. V., Mittermeier, R. A., & Werner, T. B. (1990)., Conserving the worlds biological diversity., Conserving the Worlds Biological Diversity. https://www.cabdirect.org/cabdirect/abstract /199 11620843
  8. Sayer, J. A., & Whitmore, T. C. (1991)., Tropical moist forests: Destruction and species extinction., Biological Conservation, 55(2), 199-213. https://doi.org/10.1016/0006 -3207(91)90056-F
  9. Turner, I. M. (1996)., Species Loss in Fragments of Tropical Rain Forest: A Review of the Evidence., Journal of Applied Ecology, 33(2), 200-209. https://doi.org/10. 2307/2404743
  10. Assessment (MEA), M. E. (2005)., Ecosystems and Human Well-Being: Wetlands and Water Synthesis., Washington, D.C.: World Resources Institute. https://vtechworks.lib.vt.edu/handle/10919/65899
  11. Drake, J. A. (1989)., Restoration Ecology: A Synthetic Approach to Ecological Research., William R. Jordan III , Michael E. Gilpin , John D. Aber. The Quarterly Review of Biology, 64(4), 517-518. https://doi.org/10.1086/416533
  12. UNEP/CBD/COP/8/29. (2014)., Report of the twelfth meeting of the conference of the parties to the convention on biological diversity., 293.
  13. Heywood, V. H., & Watson, R. T. (1995)., Global biodiversity assessment., Vol. 1140. Cambridge University press Cambridge.
  14. Kremen, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. F., & Sanjayan, M. A. (1993)., Terrestrial Arthropod Assemblages: Their Use in Conservation Planning., Conservation Biology, 7(4), 796-808.
  15. Lorimer, G. S. (2006)., Inventory and Assessment of Indigenous Flora and Fauna in Boroondara, 491.
  16. Innes, J. L., & Koch, B. (1998)., Forest biodiversity and its assessment by remote sensing., Global Ecology & Biogeography Letters, 7(6), 397-419. https://doi.org/10. 1046/j.1466-822X.1998.00314.x
  17. Franklin, J. F., Cromack, K. J., Denison, W., McKee, A., Maser, C., Sedell, J., Swanson, F., & Juday, G. (1981)., Ecological characteristics of old-growth Douglas-fir forests. Gen. Tech. Rep. PNW-GTR-118. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station., 48 p, 118. https://doi.org/10.2737/PNW-GTR-118
  18. Noss, R. F. (1990)., Indicators for Monitoring Biodiversity: A Hierarchical Approach., Conservation Biology, 4(4), 355-364.
  19. Vermeulen, S., & Koziell, I. (2002)., Integrating Global and Local Values: A Review of Biodiversity Assessment., IIED.
  20. Gabel, V., Home, R., Stöckli, S., Meier, M., Stolze, M., & Köpke, U. (2018)., Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods., Sustainability, 10(12), 4812. https://doi.org/10.3390/su10124812
  21. McIntosh, R. P. (1967)., An Index of Diversity and the Relation of Certain Concepts to Diversity., Ecology, 48(3), 392-404. https://doi.org/10.2307/1932674
  22. Tuomisto, H. (2010)., A consistent terminology for quantifying species diversity? Yes, it does exist., Oecologia, 164(4), 853-860. https://doi.org/10.1007/s00 442-010-1812-0
  23. Sanjit, L., & Bhatt, D. (2005)., How relevant are the concepts of species diversity and species richness?., Journal of Biosciences, 30(5), 557-560. https://doi.org/10. 1007/BF02703552
  24. McKinney, M. L. (2008)., Effects of urbanization on species richness: A review of plants and animals., Urban Ecosystems, 11(2), 161-176. https://doi.org/10.1007/s11 252-007-0045-4
  25. Tilman, D., & Pacala, S. (1993)., The maintenance of species richness in plant communities., Unknown Journal, 13-25.
  26. Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., Juday, G. P., & Parmenter, R. (1999)., The Relationship Between Productivity and Species Richness., Annual Review of Ecology and Systematics, 30(1), 257-300. https://doi.org/10.1146/ annurev.ecolsys.30.1.257
  27. Acharya, K. P. (2003)., Conserving biodiversity and improving livelihoods: The case of community forestry in Nepal., 22.
  28. Lawbuary, J. (1999). Reclaiming the Forests? Peoples Participation in Forest Management, East India. https://www.ganesha.co.uk/JoPubWeb/Frontdiss.htm, undefined, undefined
  29. Padma, T. V. (2007)., Community forestry: The regreening of the Himalayas., SciDev.Net. http://www.scidev.net/ index.cfm?originalUrl=/global/livestock/feature/community-forestry-the-regreening-of-the-himalaya.html&
  30. Thani, P. R., Kc, R., Sharma, B. K., Kandel, P., & Nepal, K. (2019)., Integrating biodiversity conservation and ecosystem services into operational plan of community forest in Nepal: Status and gaps., Banko Janakari, 29(1), 3-11.
  31. NHMRCC. (2015)., Draft Report: Study of Climate and Climatic Variation over Nepal., 41.
  32. Stainton, J. D. A. (1972)., Forests of Nepal., First Edition. J. Murray.
  33. Redford, K. H., & Padoch, C. (Eds.) (1992)., Conservation of Neotropical Forests: Working from Traditional Resource Use., p. 475 Pages. Columbia University Press.
  34. Johnson-Gottesfeld, L. M., & Hargus, S. (1998)., Classification and nomenclature in witsuwiten ethnobotany: a preliminary examination., 33. Johnson-Gottesfeld, L. M., & Hargus, S. (1998). Classification and nomenclature in Witsuwit
  35. Gaston, K. J., & May, R. M. (1992)., Taxonomy of taxonomists., Nature, 356(6367), 281-282. https://doi.org/ 10.1038/356281a0
  36. Arances, J. B., Amoroso, V. B., Gruezo, W. S., Ridsdale, C., Visser, L., Tan, B. C., Rufila, L. V., Galvezo, J. B., Opiso, G. S., Comilap, R., Lumaray, C., Comilap, C., Pacut, N., Montimar, B., & Sacal, S. (2004)., Development of a participatory methodology for inventory and assessment of floral resources and their characterization in the Montane Forests of Mt. Malindang [Philippines]., https://agris.fao.org/agris-search/search.do?record ID= PH2004001437
  37. Jinxiu, W., Hongmao, L., Huabin, H., & Lei, G. (2004)., Participatory Approach for Rapid Assessment of Plant Diversity through a Folk Classification System in a Tropical Rainforest: Case Study in Xishuangbanna, China., Conservation Biology, 18(4), 1139-1142. https://doi.org/10.1111/j.1523-1739.2004.00075.x
  38. Puth, M.-T., Neuhäuser, M., & Ruxton, G. D. (2014)., Effective use of Pearsons product-moment correlation coefficient., Animal Behaviour, 93, 183-189. https://doi.org/10.1016/j.anbehav.2014.05.003
  39. Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009)., Pearson Correlation Coefficient., In I. Cohen, Y. Huang, J. Chen, & J. Benesty (Eds.), Noise Reduction in Speech Processing (pp. 1-4). Springer. https://doi.org/10.1007/978-3-642-00296-0_5
  40. Oertli, B., Joye, D. A., Castella, E., Juge, R., Cambin, D., & Lachavanne, J.B. (2002)., Does size matter? The relationship between pond area and biodiversity., Biological Conservation, 104(1), 59-70. https://doi.org/10. 1016/S0006-3207(01)00154-9
  41. Panitsa, M., Trigas, P., Iatrou, G., & Sfenthourakis, S. (2010)., Factors affecting plant species richness and endemism on land-bridge islands - An example from the East Aegean archipelago., Acta Oecologica, 36(4), 431-437. https://doi.org/10.1016/j.actao.2010.04.004
  42. Kagiampaki, A., Triantis, K., Vardinoyannis, K., & Mylonas, M. (2011)., Factors affecting plant species richness and endemism in the South Aegean (Greece)., Journal of Biological Research, 16, 282-295.
  43. Deshaye, J., & Morisset, P. (1988)., Floristic Richness, Area, and Habitat Diversity in a Hemiarctic Archipelago., Journal of Biogeography, 15(5/6), 747-757. https://doi.org/ 10.2307/2845337.
  44. MacArthur, R. H., & Wilson, E. O. (2016). The theory of island biogeography. Princeton university press., undefined, undefined
  45. Haslett, J. R. (1997)., Insect Communities and the Spatial Complexity of Mountain Habitats., Global Ecology and Biogeography Letters, 6(1), 49-56. https://doi.org/10. 2307/2997526
  46. Brose, U. (2003)., Regional diversity of temporary wetland carabid beetle communities: A matter of landscape features or cultivation intensity?., Agriculture, Ecosystems & Environment, 98(1), 163-167. https://doi.org/10.1016/ S0167-8809(03)00078-1
  47. Halaj, J., Ross, D. W., & Moldenke, A. R. (2000)., Importance of habitat structure to the arthropod food-web in Douglas-fir canopies., Oikos, 90(1), 139-152. https://doi.org/10.1034/j.1600-0706.2000.900114.x
  48. Greenstone, M. H. (1984)., Determinants of web spider species diversity: Vegetation structural diversity vs. prey availability., Oecologia, 62(3), 299-304. https://doi.org/10. 1007/BF00384260
  49. Romero-Alcaraz, E., & Ávila, J. M. (2000)., Landscape heterogeneity in relation to variations in epigaeic beetle diversity of a Mediterranean ecosystem., Implications for conservation. Biodiversity & Conservation, 9(7), 985-1005. https://doi.org/10.1023/A:1008958720008
  50. Tanabe, S.-I., Toda, M. J., & Vinokurova, A. V. (2001)., Tree shape, forest structure and diversity of drosophilid community: Comparison between boreal and temperate birch forests., Ecological Research, 16(3), 369-385. https://doi.org/10.1046/j.1440-1703.2001.00402.x
  51. Wiens, J. A., & Rotenberry, J. T. (1981)., Habitat Associations and Community Structure of Birds in Shrubsteppe Environments., Ecological Monographs, 51(1), 21-42. https://doi.org/10.2307/2937305
  52. Thiollay, J. M. (1990)., Comparative diversity of temperate and tropical forest bird communities: the influence of habitat heterogeneity., Acta Oecologica, 11(6), 887-911.
  53. Poulsen, B. O. (2002)., Avian richness and abundance in temperate Danish forests: Tree variables important to birds and their conservation., Biodiversity & Conservation, 11(9), 1551-1566. https://doi.org/10.1023/A:10168395181 72.
  54. Southwell, C. J., Cairns, S. C., Pople, A. R., & Delaney, R. (1999)., Gradient analysis of macropod distribution in open forest and woodland of eastern Australia., Australian Journal of Ecology, 24(2), 132-143. https://doi.org/10. 1046/j.1442-9993.1999.241954.x
  55. Williams, S. E., Marsh, H., & Winter, J. (2002)., Spatial Scale, Species Diversity, and Habitat Structure: Small Mammals in Australian Tropical Rain Forest., Ecology, 83(5), 1317-1329. https://doi.org/10.1890/0012-9658 (2002)083[1317:SSSDAH]2.0.CO;2
  56. Atauri, J. A., & de Lucio, J. V. (2001)., The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes., Landscape Ecology, 16(2), 147-159. https://doi.org/10.1023/A:1011115921050
  57. Pianka, E. R. (1967). On Lizard Species Diversity: North American Flatland Deserts. Ecology, 48(3), 333-351. https://doi.org/10.2307/1932670, undefined, undefined
  58. Sullivan, T. P., & Sullivan, D. S. (2001)., Influence of variable retention harvests on forest ecosystems. II. Diversity and population dynamics of small mammals., Journal of Applied Ecology, 38(6), 1234-1252. https://doi.org/10.1046/j.0021-8901.2001.00674.x
  59. Ralph, C. J. (1985)., Habitat Association Patterns of Forest and Steppe Birds of Northern Patagonia, Argentina., The Condor, 87(4), 471-483. https://doi.org/10.2307/1367943
  60. Hill, J. K., Hamer, K. C., Lace, L. A., & Banham, W. M. T. (1995)., Effects of Selective Logging on Tropical Forest Butterflies on Buru, Indonesia., Journal of Applied Ecology, 32(4), 754-760. https://doi.org/10.2307/2404815
  61. Rohde, K. (1992)., Latitudinal Gradients in Species Diversity: The Search for the Primary Cause., Oikos, 65(3), 514-527. https://doi.org/10.2307/3545569
  62. Bhattarai, K. R., & Vetaas, O. R. (2003)., Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal., Global Ecology and Biogeography, 12(4), 327-340. https://doi.org/10.1046/j.1466-822X.2003.00044.x
  63. Turner, J. R. G., Gatehouse, C. M., & Corey, C. A. (1987)., Does Solar Energy Control Organic Diversity? Butterflies, Moths and the British Climate., Oikos, 48(2), 195-205. https://doi.org/10.2307/3565855
  64. Grytnes, J. A., Birks, H. J. B., & Peglar, S. M. (1999)., Plant species richness in Fennoscandia: Evaluating the relative importance of climate and history., Nordic Journal of Botany, 19(4), 489-503. https://doi.org/10.1111/j.1756-1051.1999.tb01233.x
  65. OBrien, Eileen M. (1993)., Climatic Gradients in Woody Plant Species Richness: Towards an Explanation Based on an Analysis of Southern Africas Woody Flora., Journal of Biogeography, 20(2), 181-198. https://doi.org/10.2307/ 2845670
  66. Maraun, M., Salamon, J.-A., Schneider, K., Schaefer, M., & Scheu, S. (2003)., Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): Effects of mechanical perturbations., Soil Biology and Biochemistry, 35(10), 1387-1394. https://doi.org/10.1016/S0038-0717(03)00218-9
  67. Padhan, D., Kundu, R., Sen, A., Yadav, V., & Adhikary, S. (2019)., Current Research in Soil Fertility., pp. 37-59. AkiNik Publications. https://doi.org/10.22271/ed.book.437
  68. Vanbergen, A. J., Watt, A. D., Mitchell, R., Truscott, A.-M., Palmer, S. C. F., Ivits, E., Eggleton, P., Jones, T. H., & Sousa, J. P. (2007)., Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient., Oecologia, 153(3), 713-725. https://doi.org/10.1007/s00442-007-0766-3
  69. Peak, R. G., & Thompson, F. R. (2006)., Factors Affecting Avian Species Richness and Density in Riparian Areas., The Journal of Wildlife Management, 70(1), 173-179. https://doi.org/10.2193/0022-541X(2006)70[173:FAASRA ]2.0.CO;2
  70. Wardlaw, T. J., Grove, S. J., Hingston, A. B., Balmer, J. M., Forster, L. G., Musk, R. A., & Read, S. M. (2018)., Responses of flora and fauna in wet eucalypt production forest to the intensity of disturbance in the surrounding landscape., Forest Ecology and Management, 409, 694-706. https://doi.org/10.1016/j.foreco.2017.11.060
  71. Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & Jeltsch, F. (2004)., Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures., Journal of Biogeography, 31(1), 79-92. https://doi.org/10.1046/j.0305 -0270.2003.00994.x
  72. Hunter, M. D. (1990)., Differential susceptibility to variable plant phenology and its role in competition between two insect herbivores on oak., Ecological Entomology, 15(4), 401-408. https://doi.org/10.1111/j. 1365-2311.1990.tb00823.x
  73. Alexander, G., & Hilliard, J. R. (1969)., Altitudinal and Seasonal Distribution of Orthoptera in the Rocky Mountains of Northern Colorado., Ecological Monographs, 39(4), 385-432. https://doi.org/10.2307/ 1942354.
  74. Hamilton, A. C. (1975)., A quantitative analysis of altitudinal zonation in Uganda forests., Vegetatio, 30(2), 99-106. https://doi.org/10.1007/BF02389611
  75. Wolda, H. (1987)., Altitude, habitat and tropical insect diversity., Biological Journal of the Linnean Society, 30(4), 313-323. https://doi.org/10.1111/j.1095-8312.1987. tb00305.x
  76. Gentry, A. H. (1988)., Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients., Annals of the Missouri Botanical Garden, 75(1), 1-34. https://doi.org/10.2307/2399464
  77. Navarro S, A. G. (1992)., Altitudinal distribution of birds in the Sierra Madre del Sur, Guerrero, Mexico., The Condor, 94(1), 29-39. https://doi.org/10.2307/1368793
  78. Austrheim, G. (2002)., Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway., Plant Ecology, 161(2), 193-205. https://doi.org/ 10.1023/A:1020315718720
  79. G., J. A. V., & Givnish, T. J. (1998)., Altitudinal Gradients in Tropical Forest Composition, Structure, and Diversity in the Sierra de Manantlan., Journal of Ecology, 86(6), 999-1020.
  80. Fleishman, E., Austin, G. T., & Weiss, A. D. (1998)., An Empirical Test of Rapoports Rule: Elevational Gradients in Montane Butterfly Communities., Ecology, 79(7), 2482-2493. https://doi.org/10.1890/0012-9658(1998)079[2482: AETORS]2.0.CO;2
  81. Grytnes, J. A., & Vetaas, O. R. (2002)., Species Richness and Altitude: A Comparison between Null Models and Interpolated Plant Species Richness along the Himalayan Altitudinal Gradient, Nepal., The American Naturalist, 159(3), 294-304. https://doi.org/10.1086/338542
  82. Odland, A., & Birks, H. J. B. (1999)., The altitudinal gradient of vascular plant richness in Aurland, western Norway., Ecography, 22(5), 548-566. https://doi.org/10. 1111/j.1600-0587.1999.tb01285.x
  83. Lomolino, M. V. (2001)., Elevation gradients of species-density: Historical and prospective views., Global Ecology and Biogeography, 10(1), 3-13. https://doi.org/10.1046/j. 1466-822x.2001.00229.x
  84. Whittaker, R. J., Willis, K. J., & Field, R. (2001)., Scale and species richness: Towards a general, hierarchical theory of species diversity., Journal of Biogeography, 28(4), 453-470. https://doi.org/10.1046/j.1365-2699.2001.00563.x
  85. Brown, J. H. (2001)., Mammals on mountainsides: Elevational patterns of diversity., Global Ecology and Biogeography, 10(1), 101-109. https://doi.org/10.1046/j. 1466-822x.2001.00228.x
  86. Colwell, R. K., & Hurtt, G. C. (1994)., Nonbiological Gradients in Species Richness and a Spurious Rapoport Effect., The American Naturalist, 144(4), 570-595. https://doi.org/10.1086/285695
  87. Rahbek, C. (1997)., The Relationship among Area, Elevation, and Regional Species Richness in Neotropical Birds., The American Naturalist, 149(5), 875-902. https://doi.org/10.1086/286028
  88. Rahbek, C. (1995)., The elevational gradient of species richness: A uniform pattern?., Ecography, 18(2), 200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x
  89. Stevens, G. C. (1992)., The Elevational Gradient in Altitudinal Range: An Extension of Rapoports Latitudinal Rule to Altitude., The American Naturalist, 140(6), 893-911. https://doi.org/10.1086/285447
  90. Patterson, B. D., Stotz, D. F., Solari, S., Fitzpatrick, J. W., & Pacheco, V. (1998)., Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru., Journal of Biogeography, 25(3), 593-607. https://doi.org/10.1046/j.1365-2699.1998.2530593.x
  91. Chettri, B., Bhupathy, S., & Acharya, B. K. (2010)., Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India., Acta Oecologica, 36(1), 16-22. https://doi.org/10.1016/j.actao.2009.09.004
  92. OBrien, E. M., Whittaker, R. J., & Field, R. (1998)., Climate and woody plant diversity in southern Africa: Relationships at species, genus and family levels., Ecography, 21(5), 495-509. https://doi.org/10.1111/j.1600-0587.1998.tb00441.x
  93. Zobel, M. (1997)., The relative of species pools in determining plant species richness: An alternative explanation of species coexistence?., Trends in Ecology & Evolution, 12(7), 266-269. https://doi.org/10.1016/S0169-5347(97)01096-3
  94. Eriksson, O. (1993)., The Species-Pool Hypothesis and Plant Community Diversity., Oikos, 68(2), 371-374. https://doi.org/10.2307/3544854