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Abstract 

Arbuscular Mycorrhizal Fungi (AMF), a group of obligate biotrophic fungi belonging to the Phylum Glomeromycota are 

among the oldest fungi in terrestrial systems on earth. Symbiotic associations of AMF and plant roots are widespread in the 

natural environment and can provide a range of benefits to the host plant. These include improved nutrition, enhanced 

resistance to soil-borne pests and disease, improved resistance to drought, tolerance of heavy metals and better soil 

structure. AMF is an unexploited potential biofertilizer in forest nurseries which can be utilized for quality tree seedling 

production. In many forest tree seedlings the inoculation of AMF was found beneficial, resulting in seedlings of higher 

quality. The high percentage of root colonization in AMF treated seedlings is found to be directly correlated with an 

improved growth and physiology. Presence of AMF significantly increases root surface area by production of extensive 

hyphae, increase transpiration, reduce leaf temperature and restrain the decomposition of chlorophyll. The AMF host 

obtains maximum benefit when the mineral nutrient regime is least favourable for growth. Hyphae work as conduits that 

transport carbon from plant roots to other soil organisms involved in nutrient cycling processes. 
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Introduction 

The contribution of Arbuscular Mycorrhizal Fungi (AMF) in 
maintenance of plant health and special attention was paid to 
plant health but not to plant growth which is obviously known 
that there are many biological and environmental factors that 
affects plant growth of which plant health is just one of them1. 
Comparable increases in shoot mass were obtained by growing 
mycorrhizal seedlings in the same soil but without the added 
AMF. It appears, as with sheating mycorrhizas, that the host 
obtains maximum benefit when the mineral nutrient regime is 
least favourable for growth. AMF associations have been of 
significant help to crop production and soil fertility as reported 
by many researchers across different agroecological zones in 
many countries.  Root colonization by AMF is a unique area 
that has justified the potential of AMF as bioprotectant and as 
biofertlizer providing protection to plants from parasitic fungi 
and nematodes and also increase plant growth and yield2-5. The 
significant amounts of carbon transfer through fungus mycelia 
connecting different plant species has been measured6. Hyphae 
are conduits that may transport carbon from plant roots to other 
soil organisms involved in nutrient cycling processes. 
Harnessing natural biodiversity such as AMF is a 
biotechnological approach which counter balances the current 
negative image of genetically modified organisms in 
conventional production systems7. 
 
The obligate biotrophic character of the AMF has always been a 
challenge in the study of these fungi. The requirement for 

establishing a symbiosis on a living plant makes these studies 
time consuming and limits experimentation. Around 230 
morphospecies of these globally important fungi have been 
identified and described so far8, which is a remarkable low 
number for such an old and widely distributed fungal taxon9. 
Recent introduction of molecular taxonomy has revealed, not 
unexpectedly, a far greater genetic diversity than morphological 
characteristics make visible. 
 

Brief Details about AMF 

Historical development in AMF research: The naming of 
organisms and the establishment of their evolutionary 
relationships are of great importance in any field of science. The 
name “mycorhiza” means peculiar association between tree 
roots and ectomycorrhizal fungi10. The first time Arbuscular 
mycorrhizas described in 184211, but most of Nageli’s drawings 
only remotely resemble the arbuscular mycorrhiza12-13. The 
distinction between ectotrophic and endotrophic mycorrhizas, 
which included at the time only ericaceous and orchid 
mycorrhizas14. The intramatrical spores “vesicules”15 and 
determined that other structures, named “arbuscules”16 were 
located in the inner cortex. Thus the name “vesicular-arbuscular 
mycorrhiza” was established and persisted till Today. The 
recognition that not all fungi formed vesicles led to the proposal 
that this symbiosis should be renamed arbuscular mycorrhiza. 
The problem was largely solved by clearing the roots of 
cytoplasm by heating in KOH and staining fungal cell walls 
with trypan blue in lactophenol17. Quantification of these 
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structures (hyphae, arbuscules, and vesicles) was standardized 
by the method proposed18. 
 
The fungus first isolated by Nicholls19 from surface-sterilized 
mycorrhizal onion roots was identified as a strain of Pythium 

ultimum in between 1952 and 1957. This was not to happen 
until Mosse’s first successful “vesicular-arbuscular mycorrhizal 
infection” of strawberry20 using nonsterile sporocarps of a 
fungus initially named Endogone mosseae in her honor21, which 
later became Glomus mosseae. The name for the arbuscular 
mycorrhizal symbiosis has changed through the years. The 
symbiosis was once frequently called “phycomycetous 
endomycorrhiza” to distinguish it from the endomycorrhizal 
symbioses formed between members of the Ericaceae or 
Orchidaceae and higher fungi. The name “Phycomycete”, 
however, no longer carries any systematic significance. At the 
1974 Leeds meeting22, the name Endogone was used by many in 
attendance to describe the “phycomycetous endomycorrhizal” 
fungi. Another outdated name for arbuscular mycorrhizal fungi, 
Rhizophagus, was also in use at the time and continued to be 
used until about 1977. 
 
The first describe an arbuscular mycorrhiza, which happened to 
have formed from poplar roots23. This was considered as a 
disease and named the fungus Rhizophagus populinus

24, 
provisionally placing it within the Chytridiales. The extraction 
of spores from soil was necessary for their classification. 
Routine extraction from soil was made possible by wet sieving 
and decanting, a method commonly used to extract nematodes 
from soil 25-26. The fungi divided into two groups of Endogone, 
one forming extrametrical azygospores/zygospores arising from 
the tip of a swollen hyphal suspensor but producing no 
intramatrical vesicles21.  The molecular data established the 
relationships among arbuscular mycorrhizal fungi and between 
arbuscular mycorrhizal fungi and other fungi27. The 
ectomycorrhizal fungi might be beneficial to their hosts28.  
 
Further progress in understanding the effects of arbuscular 
mycorrhizal fungi on plant growth was made possible by 
producing large volumes of inoculum initiated from single 
isolates of fungal species produced in “pot cultures”29-30. Thus, 
there are notable cases of growth depression apparently caused 
by arbuscular mycorrhizal fungi in “non-host” species31 or in 
host species when phosphate availability is high32-33 or in other 
cases34. Mosse did not analyze her apple tissues for phosphorus 
(P) content35. The suspicion from early on was that the fungi 
somehow increased nitrogen (N) uptake36. The beneficial 
mycorrhizal effect was mediated by P uptake. Baylis, who 
mentored a notable second generation of arbuscular mycorrhiza 
researchers, studied the growth responses to mycorrhizal 
infection of five plant species at three levels of added P37-38. The 
transfer of nutrients from fungus to host occurred across 
functional, intact arbuscules39. 
 
Phosphorus is not the only mineral element taken up and 
transported to the host by mycorrhizal fungi. The arbuscular 

mycorrhizal fungi could increase host Zn content40, for Cu41. 
The relationships between light and mycorrhization, and it had 
long been known that starch disappeared from cells with 
arbuscules42. The reduction in light level (and thus presumably 
photosynthesis) severely decreased mycorrhization43. However, 
the practicality of inoculating soils that was inherently low in 
inoculum potential such as sterile citrus nursery beds44. 
Nevertheless, non-nutritional effects of mycorrhizal fungi, such 
as those on root branching45-46 ethylene production47-48 or 
protection from pathogens (see below), may still be important. 
These include nutrient film culture49, aeroponics50 or expanded 
clay hydroponics51. 
 
Relatively early on, researchers noted that different strains of 
the fungi produced different effects on plant growth52-53. Thus, 
the selection of superior strains of AMF that were notably 
effective on particular crops was an important activity for a 
time54. Some research focused on the discovery of root 
exudates, mostly phenolics, which could stimulate growth of the 
fungus and its entry into the root55-59. One of these phenolics, 
formononetin, has now been produced commercially and field 
tests have been performed60. The diversity of soils across the 
United States supported arbuscular mycorrhizal plants61. 
 
Taxonomical development in AMF research: The history and 
complexity of the taxonomy and systematics of these obligate 
biotrophs is addressed by recognizing four periods. First, initial 
discovery period (1845-1974) which has characterized by 
description mainly of sporocarp-forming species and the 
proposal of a classification for these fungi. Second, alpha 
taxonomy period (1975-1989) which established on solid 
morphological basis for species identification and classification, 
resulting in a profuse description of new species and a need to 
standardize the nomenclature of spore subcellular structures. 
Third, cladistics period (1990 to 2000) did the first cladistic 
classification of AMF based on phenotypic characters only. And 
fourth phylogenetic synthesis period (2001 to present) based on 
genetic characters using sequences of the multicopy rRNA 
genes to played a role in defining taxa and elucidating 
evolutionary relationships within the group. 
 
The discovery period (1845-1974): During this initial period, 
much of the discovery and description of new species focused 
on sporocarp-forming species that could be recognized 
macroscopically62. It has characterized by three main events, 
The description of first species, especially those forming their 
spores in wellorganized sporocarps., The discovery of the link 
between large soil-borne spores and sporocarps with the 
formation of an arbuscular mycorrhizal association, and The 
first classification of AMF. The time span of 130 years begins 
with erection of the genus Glomus, starting with the description 
of two species by the Tulasne brothers63 and ending with the 
classification published. 
 
The alpha taxonomy period (1975-1989): This period 
contributed to the establishment of a solid morphological basis 
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for identification and classification of glomeromycotan fungi. It 
has followed; the proposal of several new genera and families. 
A profuse description of new species and the proposal for 
standardization of phenotypic characters of AMF spores to 
describe new species. 
 
The cladistics period (1990-2000): This period has marked by 
a new classification and the entry of molecular biology into 
systematics of glomeromycotan fungi. It has characterized 
mainly; Proposal of a cladistic classification for AMF based on 
phenotypic characters. Description of new taxa based on fossil 
records. Proposal of a spore development model with re-
evaluation of terminology for spore subcellular characters, and 
Use of genetic characters to define taxa and elucidate 
evolutionary relationships. 
 
The phylogenetic synthesis period (2001 to present): This 
ultimate period has characterized; the proposal of a new 
classification based solely on genetic characters (SSU rRNA 
gene). Description of new taxa based on the fossil record, and 
the creation of new taxa and a new classification based on a 
combination of phenotypic and genetic characters. 
 
Only 12 years after the monograph64, the number of described 
glomeromycotan species had jumped to 7765, and 6 years later, 
listed 126 species66. In parallel, different keys for AMF species 
identification developed, such as the synoptic key66, the 
dichotomous key67-68 and keys for groups of species69. A 
significant compiled all summary species descriptions and 
identification for AMF taxonomy published “Manual for the 
Identification of VA Mycorrhizal Fungi”70. Although this 
manual has been controversial and is out of print, it is still being 
used in some laboratories as an aid to identify AMF species. 
 
Analysis of extant species of AMF and the examination of fossil 
records led to the proposition of new taxa and the transfer of 
species to other genera. The genus Glomites and described 

Glomites rhyniensis from aerial stems and rhizomes of the 400-
million-year-old fossil Devonian plant Aglaophyton major, 
based on extraradical and intraradical hyphae, chlamydospore-
resembling spores, and arbuscule-resembling structures in the 
fossil plant71. The genus Gigasporites and the species 
Gigasporites myriamyces and Glomites cycestris from the 
Triassic plant Antarcticycas from a siliceous chert72. Glomites 
and Gigasporites were hypothesized to be related to the extant 
genera Glomus and Gigaspora, respectively. The number of new 
species described in this “cladistics period” totaled one third of 
that described in the previous “alpha-taxonomy” period. 
 
Initially there were only six genera and three families (table-1), 
now by the entry of molecular taxonomy it is increased to 29 
genera and 14 families. The rearrangement of species in the 
genus Glomus sensu lato and erected the genera Simiglomus 
and Septoglomus in the Glomeraceae73, and Viscospora in the 
Claroideo glomeraceae, and transferred back to Glomus all 
species of Sclerocystis and Rhizophagus74. Their classification 
was based on combined genetic (partial sequences of β-tubulin, 
and SSU and LSU rRNA) and phenotypic (traits associated with 
subtending hypha, e.g., color, shape and thickness, pore closure) 
characters, although some of the phenotypic characters used are 
found across several of their proposed genera. Some of the 
genera rejected75-76 and were still considered73 and were 
included in their classification scheme. 
 

Table-1 

Comparison of Classification of Phylum Glomeromycota 
 Up to 2000 2001-10 Present 

Phylum 1 1 1 
Class 1 1 3 
Order 1 4 5 
Family 3 11 14 
Genera 6 18 29 

 

 

 
Figure-1 

The present classification of Phylum Glomeromycota 
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New classes and orders have been proposed77 at higher levels of 
the taxonomic hierarchy in the phylum Glomeromycota. These 
authors erected the classes Archaeosporomycetes and 
Paraglomeromycetes to contain the orders Archaeosporales and 
Paraglomerales, respectively. They also proposed the order 
Gigasporales to be placed within the class Glomeromycetes. In 
the same year, new genera and families were proposed78. 
Scutellospora pernambucana and S. projecturata were 
transferred to the newly erected genus Orbispora, hypothesized 
to be ancestral to species of glomeromycotan fungi forming 
spores with a bulbous base78. In the same period, Entrophospora 
was found to be nonmonopyletic and E. infrequens to be closely 
related to Claroideo glomus species, based on ribosomal gene 
analyses79. These authors then transferred the family 
Entrophosporaceae from the order Diversisporales to the 
Glomerales, synonymized Entrophosporaceae with 
Claroideoglomeraceae, and proposed the new genus Albahypha. 
The publication of a large number of taxon names at all levels 
within the arbuscular mycorrhizal fungi (Glomeromycota) has 
resulted in conflicting systematic schemes and generated 
considerable confusion among biologists working with these 
important plant symbionts80. 
 
AMF and its importance: AMF developed symbiotic 
relationship with many of tree species. AMF was inoculated to 
root surface of the host plant to acquire carbon and help the host 
plant to take up phosphorous and other nutrients from the soil. 
Symbiosis is useful for the plant because phosphorous is 
necessary for plant growth and development, especially under 
phosphorous deficient conditions81. The process of root 
infection by the fungi is made of complex stages including spore 
germination, hypha differentiation, aprosurium formation, root 
penetration, intercellular growth, arbuscule formation and 
nutrient transfer82. Arbuscules are branched hypha, found inside 
root cells from where nutrient exchange takes place between 
fungi and the host plant83-85. As roots develop, a condition for 
inoculation by AMF improves and the carbohydrates are used 
by AMF for growth (extension of the hypha). AMF may 
increase plant tolerance to biotic and abiotic stresses86-88. One of 
the unique characteristics of AMF, to significant increase in 
surface area due to the production of extensive hypha helping 
plants grow under relatively harsh conditions, such as drought 
stress89-90 and nutrient deficiency91.  
 
Nutrient uptake: The capacity of plants to acquire nutrients has 
affected by many factors. The formation of AMF, associations 
between the roots of most terrestrial plant species and a 
relatively small group of soil fungi, can increase the capacity of 
plants to acquire nutrients from the soil92. The fungi do this by 
growing beyond the nutrient depletion zones that typically form 
around roots, and by greatly increasing the absorptive surface of 
the root system. Their rapid growth and high plasticity enables 
the fungi to exploit nutrient patches in the soil, and to better 
respond to the tremendously complex spatio-temporal dynamics 
of soil nutrients93-94. AMF are able to take up nutrients in 
inorganic forms91. The evidence suggested that AMF may 

access nutrients from organic sources95-96, this most likely 
occurs following the mineralization of nutrients in organic 
matter97. Irrespective of the mechanisms involved, it is likely 
that AMF will be important in helping plants to acquire 
nutrients released from compost. Although insights have been 
gained into how compost addition affects the formation of 
AMF, relatively few studies have considered impacts on the 
functioning of AMF98-100. AMF has the potential to promote 
plant nutrition and growth, and reduce nutrient leaching. 
Enhanced plant phosphorus (P) uptake is generally considered 
the main benefit of AM to plants101. Effects of P supply on the 
formation of AMF are especially relevant to farming systems 
where large amounts of inorganic fertilizer are added to the soil. 
 
Micronutrients uptake: The multifunctionality of AMF with 
respect to plant nutrition91,102-106  has observed differences 
among AMF are consistent. Variation in plant micronutrients 
may be also due to differences among AMF. Also, AMF may be 
important for a wide variety of nutrients and enhance the uptake 
of nitrogen105, zinc107-109, copper91,102,110 and iron111 among 
others112. Overall, the effect of AMF on plant micronutrient 
nutrition has reported to enhanced effects105, 113-116, diminished 
effects117-118 and no effects119-120. 
 
Disease control: AMF well had known to improvement the 
plant health and growth121.  It will improve resistance to plant 
for various stress factors and intimate interrelationship between 
the mycorrhizal symbiont and the plant, to ensure that it will be 
highly responsive to management practices122. Often, AMF 
colonized plants are less infected by pathogens and show lower 
disease incidence than the non-colonized plants123. The 
prophylactic ability of AMF could be exploited to improve plant 
growth and health. Several reported evidence of AMF 
inoculation as a means of biological control against soil-borne 
diseases124-127, but only few authors have reported the role of 
AMF against shoot or stem diseases128. AMF established 
symbiosis with host plants, the host plants get benefited from 
this mutualistic relationship in terms of improved growth and 
reduced incidence of diseases129-130. This could be attributed to 
better compensation for the damage caused by the pathogen131 
through increased capacity for nutrient uptake by the AMF and 
plant association, which may allow host plants to be more 
vigorous, and consequently more resistant or tolerant of 
pathogen attacks132. 
 
Water uptake: AMF has ability to affected plant water 
relations133-135. AMF also contributed to water influx and efflux 
in host plants, thus affecting tissue water content and leaf 
physiology136. In drought stress, AM soil moisture content 
(SMC) indicate in root systems symbiosis, stomata conductance 
and transpiration, with transpiration typically higher and 
stomata conductance frequently unaffected or greater relative to 
non-AMF plants. However, it may also result from the 
adherence of AM hyphae to soil particles, thus improving 
contact with the soil solution121,136. Enhanced drying by AM 
plants may also be associated with the access of hyphae to small 
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pore spaces inaccessible to host roots and root hairs137-138 and 
the subsequent uptake of water by AM mycelia for the 
maintenance of physiological activities139.  
 
Stress control: AMF has renowned to their exchange for 
photosynthetic carbon from their host. It improved plant growth 
through increased nutrient uptake and enhance plant tolerance 
against abiotic and biotic stress92,140-141 such as salinity stress, 
heavy metal contamination, and desert conditions142-146. They 
have some unique properties to the beneficial host plant under 
different stresses condition. AMF able to produced very 
extensive network of hyphae in the soil and colonization of 
plant roots when in symbiosis with the host plant and formulate 
some specialized structure, including arbuscules and vesicles 
which can significantly enhance the absorbing capacity of the 
root for water and nutrients147. 
 
Survival percentage: AMF improves the survival and growth 
of most plants in natural communities148. Their ability to 
increase growth and yield by improving nutrient uptake makes 
them very important149. The function of all mycorrhizal systems 
depends on the ability of the fungal symbiont to absorb 
inorganic and organic nutrients available in soil91. AMF allow 
plants to cope with both biotic and abiotic stresses. They may 
help to fight off verticillium wilt150, alleviate certain nutrient 
deficiencies, improve drought tolerance, overcome the 
detrimental effects of salinity and enhance tolerance to 
pollutants151-153. The extensive activity and survival potential of 
VA mycorrhizal fungi in most naturally occurring plant 
populations on undisturbed soil is immediately obvious from an 
examination of the roots of the vegetation present. 
Rehabilitation of disturbed sites tends to attract ruderal non-
mycotrophic or facultatively mycotrophic plants, which 
preclude the survival of mycotrophic seedlings and the 
introduction of mycorrhizal propagules154. The extensive 
activity and survival potential of VA mycorrhizal fungi in most 
naturally occurring plant populations on undisturbed soil is 
immediately obvious from an examination of the roots of the 
vegetation present. AMF have not yet been cultured axenically 
and considered to be obligate symbionts in plants. 
 
Diversity of AMF: The obligate biotrophic fungi belonging to 
the Glomeromycota and oldest fungi in terrestrial systems on 
earth155. The symbiotic relationship of the Glomeromycota with 
plants assumed to have played an essential role in the 
establishment of (pre) vascular plants on the land masses that 
took place about 460 M years ago in the geologic period Middle 
Ordovician156. This assumption is supported by evidence from 
fossil material. The glomeromycotan fungi develop symbiotic 
relationships with the majority of vascular plants in almost all 
habitat types157.  
 
Ecology of AMF: Fungi significantly play a role in many of 
microbiological and ecological processes, cycling of minerals 
and organic matter, decomposition, influencing soil fertility as 
well as plant health and nutrition. Fungi belongs to heterotrophs, 

requiring external sources of carbon for energy and cellular 
synthesis and they adopted three different trophic strategies to 
obtain this carbon, occurring as saprotrophs, necrotrophs, and 
biotrophs158-159. 
 
Nutrient acquisition: Of all the essential plant nutrients the 
macronutrient phosphorus is the element that has received most 
focus in connection to the AMF symbiosis. The acquisition of 
nitrogen by AMF has long been paid little attention to160. The 
uptake of N from organic sources can be substantial, not at least 
for covering the AMF own need for N161, but also in cases of 
lack of N mobility under dry conditions the transfer to the plant 
can be significant162. Most nitrogen studies are related to N-
uptake by AMF.  
 
Soil quality: Arbuscular mycorrhizal fungi have an impact on 
soil quality, and in turn they are influenced themselves by the 
properties of soils160,163. A major element in the contribution of 
AMF to soil quality is their role in aggregate development164. 
This is based on the production of the glycoprotein glomalin165 
which has a long lasting stability in the soil166 and acts as glue 
for soil particles. The fungal hyphae help to improve the soil 
particles. The AMF mycelium delivers carbon rich compounds 
and other bioactive signals further away from the root, thereby 
stimulating microbial activity in more remote sites167. 
 
Plant defence interactions: The role of AMF has contributed 
to plant defence and fungal plant pathogens especially the case 
for those pathogens with an obligate biotrophic phase159,168. 
AMF as biocontrol agents have already a long history in 
academic research169. Much of the work with biocontrol by 
AMF, also contemporary literature, has an anecdotic character 
describing single cases of biocontrol without a clear reference to 
the mechanisms involved. Few exceptions exist as for example 
the induction of defence related enzymes following colonization 
of roots with AMF170. Besides a direct interaction between 
pathogen and the mycorrhizal root, indirect effects may occur. 
This is shown by the stimulus of AMF associated bacteria 
suppressing pathogenic activity171. 
 
Population behaviour of AMF: Populations of AMF are not 
fixed; they are dynamic in response to the various forces in the 
environment. The changes in time and space are both intra and 
interspecific. AMF have a coenocytic mycelium that harbors 
many nuclei with probably a certain level of heterokaryosis, 
although the level of within-fungus polymorphism may be low. 
In addition, related strains are able to form anastomosis which 
opens for an exchange of nuclei172. Spores contain hundreds of 
nuclei and a high intraindividual genetic diversity may be 
present in AMF. Over a short time span the genetic assemblage 
can change173-174, and is probably mainly based on changes in 
allele frequencies175-176. 
 
AMF-Plant community interactions: The interaction between 
AMF and their host plants has complicated and still poorly 
understood. At the plant community level different plant species 
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share the same mycorrhizal networks. These networks may 
consist of mycelium from different AMF species and genotypes. 
The terms of trade for each fungus-host combination seem to 
vary, and thus influencing the outcome of the symbiosis177. On 
the plant community level a correlation was found indeed, and 
the spatial structure of AMF communities in soil reflects 
probably the heterogeneity in the vegetation160,178-179. The 
interaction of weeds-AMF-seedlings receives an increasing 
focus in forest ecosystems. Here a distinction is made between 
invasive, ruderal and natural plant species. It is speculated that 
invasive plant species are hampered in their development by 
AMF180-181 which may be of advantage regarding management 
of certain weeds. Although, contrasting results are also 
obtained182 showing that native AMF give invasive plant species 
a competitive advantage. However, most of the experimental 
data dealing with ecological questions are from isolated pot and 
microcosm studies. Extrapolation to open field situations is 
difficult, if not impossible183. 
 
Standardization of inoculation dosage: Mycorrhizal develop 
rapidly, with the high dosed of alginate inoculum used and also 
proved that the number of fungal propagules in each bead has 
important factor in the efficiency of the inoculums184. The 
positive dose response attributed to a better colonization of the 
rhizosphere by the introduced microorganism185, leading to a 
larger population which produces more of the effective 
substances either directly, because the cells are more numerous, 
or indirectly through quorum-sensing mechanisms within high-
density micro-colonies186 increasing the inoculation dose 
generally increases plant protection185,187 and root growth were 
also observed with high inoculation doses188-189. A negative 
response was in bacterial inoculation in different doses, the 
lowest doses were the most efficient ones190. 
 
To standardize the critical level of AMF for Prosopis cineraria 
seedling, Glomus sp. was used at different spore levels (up to 
900 g germinanable spores per seedling per polybag). 
Mycorrhizal inoculation increased plant height, dry matter yield, 
root length and per cent root infection. Eighty five per cent 
infections were found to be sufficient for optimum response 
by P. cineraria seedling. The critical level of spores was found 
to be 400 per polybag (1 kg soil) for P. cineraria seedling191. 
The standardization of inoculum dose in Tecomella 

undulata seedlings found that 100 g rhizosphere soil (500 
germinanable spores) of AMF was the best dose for better 
growth192. Crops for transplantation can be pre-inoculated with 
AMF in the nursery itself so that the inoculum quantity can be 
reduced. In chilli among different dose recorded maximum 
colonization and the economical dose for satisfactory 
colonization was found to be 850 g m-2 193. 
 
Positive effects of AMF on seedling physiology: The root 
colonization in AM fungal treated plants has directly correlated 
with a better nutrient uptake, an increase in the rate of 
photosynthesis, increased total chlorophyll content and 
transpiration194-197, and thereby improved root and shoot growth 

were expected198-199. These results also conformity an increase 
of total chlorophylls when inoculated with AMF200-201. The 
AMF infected plants had a comparatively low transpiration rate 
and higher water use efficiency (WUE) as compared with non 
mycorrhizal plants. This reduced transpiration rate was due to 
increased stomatal resistance provided by the AMF colonization 
by decreasing stomatal conductance196. The mycorrhiza could 
increase the rate of leaf transpiration, reduce leaf temperature 
and restrain the decomposition of chlorophyll202. 
 
Factors influencing the efficiency of AMF fungi: AMF has 
established the symbiosis relation with host plants and its range 
of factors association, both directly, by damaging or killing 
AMF and indirectly, by creating conditions either favourable or 
unfavourable to AMF. In general, AMF has interacted of host 
plant with several other factors such as abiotic and biotic 
factors. 
 
Abiotic factors: The soil factors exert maximum influence on 
establishment AMF. The light textured soil supports the AMF 
sproulate heavily, but their survival was generally more in 
loamy soils than in sandy soils. The pH optimum of spore 
germination would probably differ with each AMF species and 
the environment to which each is indigenous203. The G. mosseae 
common in alkaline flatland soils germinated well on water or 
soil extract at pH 6 to 9204. Thus, it appears that pH can 
influence the germination of AMF spores, but germination 
seems to occur within a range is still acceptable for plant growth 
and AMF species have distinct behaviours at different levels of 
pH205. Moisture to influence below field capacity, germination 
declined with no germination206. Higher levels of germination 
could be obtained at low water potential, if spores were 
incubated longer. Further observed that germ tube length was 
reduced at low water potential207.The increase in temperatures 
generally resulted in more root colonization and increased 
sporulation208-209. Increased content of heavy metal pollutants 
(Cd, Pb, Zn and As) in the soil resulted in a decrease in AMF 
colonization210. Much of the influence of soil fertility on root 
colonization is plant mediated and the root colonization is 
inhibited at high phosphorus levels because of the decreased 
root exudation211. The increased solar radiation increased 
percentage colonization209,211-214. The low light intensity can 
significaltly reduce root colonization, but its effect on 
sporulation may be less pronounced214. Seasonal variation in 
percent root colonization with VAM fungi was noticed and the 
lowest colonization was during winter and highest during last 
summer and autumn215.  
 
Biotic factors: In addition to abiotic factors the biotic factors 
like host, genotypic variation among the host, cropping 
sequence, rhizosphere effect and root exudates exert an equal 
influence in determining the AMF population in soil. Certain 
AMF species may be efficient in stimulating the growth of 
certain plant species, but each AMF is generally able to colonize 
every AMF host species32. It appeared that the host plant could 
affect sporulation and possibly survival of AMF216-217. All these 
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workers point out the necessity of taking into consideration the 
existence of AMF symbiosis in the selection processes, since 
greater yields at lowest cost can only be obtained when better 
fitness of plant species or varieties to this association is 
exploited. The presence of plant roots causes a rapid and intense 
stimulation of the microbial population in the rhizosphere 
region218, and AMF symbiosis was initiated at the zone of 
elongation from where root exudation was greatest219. 
 
Mechanism of AMF infection: The obligate biotrophic 
character of the AMF has always been a challenge in the study 
of these fungi. The requirement for establishing a symbiosis on 
a living plant makes these studies time consuming and limits 
experimentation. The receptor proteins has modified to fungal 
plasma membrane and the chemical signals such as flavonoids 
and strigolactones, together with surface or thigmotropic signals 
from the rhizodermis exuded by the plant220 (Figure-2). The 
signal perception receptor proteins has modified and possibly 
interacted with downstream components. Gin1 might be one of 
the downstream components, located at the plasma membrane 
where it has covalently modified by plant signals. Through its 
ATPase activity, Gin1 might interact or modify other membrane 
proteins to transmit the signal towards the nucleus. Calcium, 
released from cellular organelles such as the endoplasmatic 
reticulum, might act as a second messenger (Figure-3). Due to 

activation of mitochondrial respiration and increased ATPase 
activity caused membrane hyperpolarization occurs after 
transcriptional induction of the corresponding genes. Some of 
the fungal genes activated in response to plant signals developed 
which disable programmed growth arrest and allows the fungus 
to enter into the symbiotic modus. 
 
A model suggested that events that are mediated by the 
predicted protein products of cloned common symbiosis 
receptor kinase (SYM) genes221 (Figure-4). The 
SYMRK/NORK/DMI2 receptor kinase may be the earliest to 
act in the AM signalling pathway. It perceives signals 
emanating from the fungal microsymbiont either directly or 
indirectly, and transduces the event through its intracellular 
kinase domain. This, in turn, activates the predicted ion channel, 
DMI1. The availability of purified bacterial signalling 
compounds and experimental difficulties arising from the 
obligate biotrophic nature of the fungus have contributed to a 
situation in which we know more about early signalling events 
in root nodule symbiosis than in AM. In particular, we do not 
know whether the calcium-spiking response that is characteristic 
of the rhizobial symbiosis also occurs in the mycorrhizal 
interaction. The DMI3 kinase potentially responds directly to 
oscillations in calcium-concentration, however, implying that 
Ca2+ is also a messenger in mycorrhizal signalling. 

 

 
Figure-2 

Signal exchange between the plant root and the hyphae of AMF before infection 
 

 
Figure-3 

AMF perception of plant signals during mycorrhiza establishment 
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Figure-4 

A model of events that are mediated by the predicted protein products of cloned common SYM genes 

 
Seedling Quality Improvement: The goal of forest tree nursery 
practices is to produce high quality seedlings with useful 
characters221. Evolving appropriate nursery management 
strategies to enhance productivity and thereby reducing the long 
nursery period has been the basic challenge. Among the variable 
silvicultural options, early tree nutrition practices have bagged 
considerable attention in the recent times in view of their long 
standing effect on tree growth and productivity. However, the 
species is still poorly studied in relation to its management in 
plantations and its physiological responses222 to AMF 
applications. Artificial inoculation with mycorrhizal fungi in the 
nursery can be used to increase seedling performance 
consistently positive results have been obtained with Acacia 

nilotica and Albizia lebbeck
223, Acacia mangium

224, Acacia 

mearnsii
225, Acacia nilotica

226, Acacia tortilis
227, Apple228, 

Apricoat201, Calliandra calothyrsus
229, Cashew230, Chinses 

fir231, Citrus232,233, Dalbergia sissoo
234, Douglas-fir184, 

Eucalyptus tereticornis
235, Leucaena leucocephala

236, Olive237, 
Pistacia vera

238, Pongamia pinnata
239, Prosopis juliflora

240, 
Sandalum album

241
 and Tectona grandis

242. 
 
Negative growth: Generally, AMF associate with the host plant 
and helps to uptake of nutrients and enhance the multiple 
benefits to the host plant it may not be obviously mutualistic at 
evrytime but it has possible under some conditions that the 
AMF may cheated their host plant for supply of nutrients such 
as decline in growth243and its very difficult process244 because 
of the wide range of benefits to the host, which may only in 
under certain environmental conditions or stresses. The few 
researchers reported that disturbance the colonisation of AMF 
may be significantly reduced the yield245-247. The apparently 
contradictory evidence regarding the effect of AMF on plant 
nutrient absorption may be connected to the increasing 
realisation that degree of selectivity between the host and the 
fungi and that different AMF have varying effects on different 
plant species, from strongly positive increases in nutrient uptake 
and or growth to strongly negative248-252 though the range of 
results, from positive, to neutral and negative suggests 
dependency on the host/fungal combination253. Use of other 
readily soluble fertilisers, particularly N fertilisers, has also been 
reported to have a negative impact on AM colonisation and/or 

diversity in some cases254-257, though not in others258-259. 
However, overuse of organic amendments, especially those high 
in P, such as chicken manure, may impact negatively on AMF 
and the precise effect of organic amendments has been shown to 
be unpredictable on any given soil or with any particular 
amendment260-262. Other types of biocide can have negative, 
neutral or positive effects on the AM association263-264. 
 
Though increasing crop diversity is generally beneficial to 
AMF, adding a non-mycorrhizal host crop can have a strongly 
negative impact on AM colonisation, nutrient uptake and yield 
of subsequent AMF reliant crops261, 265-268. Inoculation 
experiments have shown that different AMF species produced a 
wide range of growth responses in the host plant, from 
significantly positive to significantly negative. Often the 
concentration of soil P influences the effectiveness of 
inoculation80,269-271. 
 

Conclusion 

Harnessing natural biodiversity such as AMF is a 
biotechnological approach which counters balances the current 
negative image of genetically modified organisms in 
conventional production systems. Mycorrhizal colonisation of 
plants can offer considerable benefits in terms of growth, 
nutrient uptake and yield. The real significance of AMF 
connects the primary producers of ecosystems, plants, to the 
heterogeneously distributed nutrients required for their growth, 
enabling the flow of energy rich compounds required for 
nutrient mobilization whilst simultaneously providing conduits 
for the translocation of mobilized products back to their hosts. 
Inoculation increases biomass production, rate of transpiration, 
rate of photosynthesis, reduce leaf temperature and restrain the 
decomposition of chlorophyll. The effect of AMF on plant 
nutrient absorption may be connected to the increase the degree 
of selectivity between the host and the fungi. New molecular 
tools have enabled identification of AMF symbiont genes with a 
higher degree of resolution of SYMRK/NORK/DMI2 signal 
perception. However, there is a big gap in understanding of 
AMF and its standardization of optimum level of AMF species 
for physiologically sound quality tree seedling production in 
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tropics region especially in India. The limited studied has 
carried related to molecular mechanism of symbiosis and 
diseases /stress tolerance of AMF inoculated tree seedlings 
because of obligate biotrophic character of the AMF. If we will 
be achieve efficient use and manipulation of AMF for long-term 
quality improvement and productivity in forest tree nursery, our 
understanding of their physiology and function and their 
interactions with seedlings and environmental conditions needs 
to be improved. 
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